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Abstract 
With the development of advanced information and communication technology, traditional power grids have 
been transformed into smart grids. An important feature of smart grids is the mutual influence between 
information systems and physical systems, forming a highly coupled power information physical system, 
which makes smart grids face more severe information security threats than traditional grids. False Data 
Injection Attack (FDIA) is an emerging form of covert power grid attacks. The paper comprehensively 
discusses the attack model, suppression schemes, and impact of false data injection on smart grids, and the 
topic has practical significance. The main work of the paper includes the following aspects: Firstly, the paper 
provides an overview of the basic concepts and key technologies of smart grids, as well as information security 
issues. Next, we will comprehensively discuss the FDIA model and its classification. Then, a neural network-
based FDIA suppression model was designed and simulated for testing. Finally, the impact of FDIA on smart 
grids was comprehensively discussed. The main contribution of the paper is the design of a system model for 
FDIA detection, localization, and data recovery based on a neural network framework. The results of the paper 
can provide reference for a comprehensive exploration of the impact of FDIA on smart grids. 
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Introduction 

The introduction chapter lays the basis for addressing the critical issue of False Data Injection Attacks (FDIA) 

on smart grids. It outlines the purpose and significance of the research, emphasizing the growing reliance on 

smart grids as a reliable source of electricity to meet increasing demand. The chapter highlights the necessity 

for improved security measures to safe these grids from FDIA. It reviews the present state of research on 
FDIA detection and mitigation, discussing various methodologies employed globally. This chapter sets the 

stage by providing a clear motivation for the study and detailing the methodology used throughout the 

research. 

1.1 Purpose and significance of the topic 

1. Purpose 

This study's main purpose is to solve the serious problem of false data injection attacks, or FDIAs, on smart 
grids. Making sure smart grids are secure has become crucial because of the growing reliance on them as a 

dependable supply of electricity to satisfy the rising demand. By contrasting different FDIA models, 

examining the effects of FDIA, and creating a strong neural network-based framework for the identification, 

localization, and recovery of tampered data, the goal of this study is to enhance smart grid security. The 
report outlines the methods employed throughout the research and provides a clear justification for 

addressing FDIAs by offering a thorough background and literature evaluation. Additionally, the study 

includes an in-depth analysis of smart grids, laying the groundwork for a thorough examination of FDIAs and 

their impacts on smart grid actions. 

2. Significance 

The significance of this study relies in its ability to substantially improve the security and resilience of 

smart grid systems against False Data Injection Attacks. Smart grids are integral to modern power 

distribution, offering enhanced efficiency, reliability, and sustainability. However, their vulnerability to 
FDIAs poses a significant threat to their operations and the broader electrical infrastructure. By providing a 

comprehensive analysis of FDIA models and developing a sophisticated neural network-based detection and 

recovery framework, this research contributes to the advancement of smart grid security. The study's 

detailed background and literature review establish a strong foundation for understanding the importance 

of addressing FDIAs. Consequently, this study not only addresses a critical cyber security issue but also paves 

the way for more secure and reliable smart grid systems, which are essential for meeting future energy 

demands sustainably. 

1.2 The current situation at home and abroad 

In 2009, Liu et al. initially proposed the notion of False Data Injection (FDI) attacks [1]. To gain a 

comprehensive understanding of this matter, it is necessary to go into the previous research and 

investigations that have been conducted. He, Youbiao et al. utilized deep learning techniques to detect FDI 

attack patterns by analyzing historical measurement data, allowing for immediate identification [2]. In 2012, 

Lin, Jie et al. conducted a study on weaknesses in distributed energy routing and put out innovative FDI 
attacks targeting the energy routing mechanism [3]. Tufail, Shahid et al. investigated the consequences of 
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foreign direct investment (FDI) attacks on artificial intelligence (AI)-driven smart grids [4]. In their study, 

Zhang et al. proposed the utilization of a data-driven learning method for the identification of undetectable 

Fault-Induced Delayed Activation (FDIA) occurrences in distribution systems [5]. Yu, Wei et al. created a data 

detection system that can identify fraudulent information by utilizing specialized strategies for various sorts 

of attacks [6]. Xu, Ruzhi et al. devised 

a highly effective detection method to counteract FDIA [7]. Chen, Po-Yu and colleagues proposed a real-time 

method to identify FDI attacks in smart grids. This method improves detection performance by utilizing 

spatial-temporal correlations among grid components [8]. This solution uses a deep learning-based 

architecture to detect inserted data measurements [9]. Tran et al. suggested a technique based on a nonlinear 

physical-constraint model capable of producing covert FDI attacks [10]. Habib et al. established a 

comprehensive model addressing the implications of FDI attacks on the grid, economy, and society [11]. Pei et 

al. presented a robust deviation-based detection technique that integrates a supplementary Kalman filter 

alongside the original weighted least squares estimator [12]. Ayad, Abdelrahman et al. examined the use of 

Recurrent Neural Networks (RNN) to detect FDI attacks [13]. Drayer, Elisabeth et al. devised a strategy to 

identify previously undetectable FDI attacks [14]. Dehghani, Moslem et al. suggested a novel detection 

approach employing singular value decomposition (SVD) and fast Fourier transform (FFT) [15]. Youssef, El-

Nasser et al. offered a summary of research on stealth FDI attacks against state estimation [16]. Anwar, Adnan, 

and Abdun Naser Mahmood evaluated the features and importance of FDI attacks using a literature analysis 
and case study [17]. Wang et al. suggested a unique data analytical method using the margin setting algorithm 

(MSA) for detecting FDIAs [18]. Nath, Samrat et al. presented a fastest invasion detection approach for time-

varying dynamic models [19]. Li, Yang et al. developed an FDIA detection approach based on safe federated deep 
learning, combining Transformer, federated learning, and the Paillier cryptosystem [20]. Rahman, Moshfeka 

and Yuanliang Li developed a stealthy FDIA technique utilizing multi-objective evolutionary optimization, 

demonstrating large impacts with minimum meter sacrifice [21]. Dayaratne et al. proposed a high-impact FDIA 

and examined how adversaries can employ strategic information integrity assaults to achieve financial 

benefits using real-time pricing schemes [22]. Musleh, Ahmed S. et al. conducted a comprehensive 

investigation of FDI attacks in smart grids, utilizing a detection system based on Principle Component Analysis 

(PCA) for real-time analysis [23]. Li, Beibei et al. suggested a secure and resilience-enhanced system (SeCDM) 

to detect and mitigate FDI hazards in smart grids [24]. Lastly, Iqbal et al. compared three FDI detection 

strategies, resulting in the development of an H2 control method to detect and manage erroneous data 

injection in a 12th-order smart grid model [25]. These different research initiatives illustrate the complexity 

and dynamic nature of FDI threats, underlining the necessity for continuing developments in detection and 

mitigation measures to secure smart grids. 

1.1 The content arrangement of the paper. 

In this section the arrangement of the paper has been illustrated the summary of the contents including 

introduction, Understanding Smart Grids, FDIA Model Analysis, Suppression Method, Discussion and 

Conclusion & Future Outlook. Based on the previous research, different types of FDIA attack model 

investigated, impact of the attack evaluated on smart grids in this paper. Finally, a suppression method is 

proposed and concluded with future outlook of the topic. Chapter-wise overview provided in bellow: 

 

Chapter 2 
"Understanding Smart Grids," gives a comprehensive description of the technology and its significance in 
modern power distribution. It discusses the evolution of smart grids, key components such as Advanced 
Metering Infrastructure (AMI), sensors, communication networks, control systems, and Distributed Energy 
Resources (DERs). The chapter also delves into the benefits of smart grids, including enhanced reliability, 
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efficiency, integration of renewable energy sources, consumer empowerment, and economic benefits. 
Additionally, it addresses the challenges associated with implementing smart grids, such as high initial costs, 
cybersecurity risks, data privacy concerns, and regulatory and policy issues. 
 
Chapter 3: FDIA Models Analysis 

 
In "FDIA Models Analysis," the third chapter, the paper delves into the fundamentals of False Data 

Injection Attacks (FDIA), explaining their basic concepts and operational mechanisms. It presents a detailed 
analysis of various FDIA models, their methodologies, and how they compromise smart grid security. The 
chapter classifies FDIAs based on attack models, network architecture, construction methods, attack targets, 
and data-driven approaches. It explores different types of FDIA, including state estimation attacks, load 
redistribution attacks, price manipulation attacks, and data integrity attacks. This chapter gives a full review 
of the various FDIA models and their potential impacts on smart grid operations. 
 
Chapter 4: Neural Network Based Suppression Method 

 
Chapter 4, titled "Suppression Method," introduces neural network-based solutions for detecting and 

mitigating FDIA. It explains the use of Self-Attention Deep Convolutional Neural Networks (SA-DCNN) for 
recognizing and locating FDIA, emphasizing the advantages of embedding the Self- Attention system into 
DCNN to improve detection accuracy. The chapter also explores the use of Autoencoders with Long Short-
Term Memory (AE-LSTM) networks for recovering tampered data. This approach aims to restore normal 
data by generating corrected data with the same distribution pattern as the input. The combination of AE 
and LSTM models captures the spatiotemporal correlation of power grid operating data, enhancing the 
effectiveness of data-driven algorithms in restoring false data to normal. 
 
Chapter 5: Discussion 

 
This Chapter ''Discussion'' part focuses on the operational, economic, and security implications of FDIA on 

smart grids. It examines how FDIA can disrupt normal operations by manipulating energy routing and 
causing grid imbalances. The chapter discusses the effects of FDIA in the economy, such as the manipulation 
of real-time pricing mechanisms and increased operational costs. It highlights the threat to state estimation 
and how advanced FDIA can bypass traditional detection mechanisms, making it challenging to identify and 
mitigate such attacks promptly. The chapter also addresses the increased vulnerability of smart grids, the 
impact of FDIA on dynamic micro-grid partitioning, and the potential for cascading failures. It highlights the 
vital need for comprehensive cyber-security measures to safeguard the dependability and efficiency of smart 
grids. 
 
Chapter 6: Conclusion & Future Outlook 
 

The final chapter, "Conclusion & Future Outlook," summarizes the research findings on the impact of FDIA 
on smart grids and the effectiveness of neural network-based frameworks in mitigating these 

attacks. It reiterates the significance of improving smart grid security and resilience through advanced 
detection and recovery solutions. The chapter outlines future research directions, emphasizing the need for 
enhanced detection mechanisms, integration of emerging technologies, adaptive security strategies, 
interdisciplinary research, and global collaboration. It calls for the development of comprehensive security 
strategies to detect and mitigate FDIA, safeguarding the operational integrity and economic stability of smart 
grid systems. It points out the vital need for strong cyber-security measures to ensure the dependability and 
efficiency of smart grids. 

https://jgkijournal.com/
https://doi.org/10.7910/DVN/D5XIZW


Journal of Global Knowledge and Innovation (JGKI), Volume 3, Issue 2, February-2025 

ISSN 3079-1995 

 

25 
 

Journal of Global Knowledge and Innovation (JGKI), Volume 3, Issue 2, February-2025 
ISSN 3079-1995 

www.jgkijournal.com 
DOI: https://doi.org/10.7910/DVN/D5XIZW 

 

Chapter 2 Understanding Smart Grids 
This delivers a complete overview of smart grids, discussing their definition, key components, benefits, and 
challenges. This chapter explains how the integration of advanced technologies enhances the safety and 
effectiveness of power distribution systems. 

2.1 Introduction to Smart Grids 

The generation, distribution, and use of energy have experienced a drastic metamorphosis due to smart grids. 
Modern information and communication technologies (ICT) integrated with the conventional electrical grid 
results in a power infrastructure that is resilient, intelligent, and efficient. Real-time monitoring, automatic 
decision-making, and communication in both directions between companies and customers are made 
possible by this integration, which has several advantages, including increased efficiency, increased 
dependability, and the utilization of renewable energy resources. This section offers a thorough overview of 
smart grids, going over their definition, essential elements, advantages, and drawbacks. 
 
Definition and Concept 
A Smart grid is an electrical system that uses digital technology to track, control, and manage the flow 
of electricity from various generation sources to satisfy the various energy demands of customers. It 
incorporates various technologies, like smart meters, advanced sensors, automated control systems, 
and advanced communication networks. The main aim of a smart grid is to make the power grid more 
trustworthy, efficient, and sustainable by enabling real-time information flow and improved 
interaction between all stakeholders involved in the electricity supply chain. 
The traditional electrical grid was designed over a century ago and has seen incremental improvements over 
the years. However, it has inherent limitations, such as a lack of real-time monitoring, limited control over 
power flows, and difficulties in integrating renewable energy sources. Smart grids address these limitations 
by leveraging modern ICT to create a more dynamic and flexible grid infrastructure. Fig. 2-1 shows Smart 
Grid [26]. 

 

 
Fig. 2-1 Smart Grid 
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2.1.1 Key Components of Smart Grids 

 
The smart grid ecosystem relies on several essential elements to accomplish its goals. These 

components are as follows: 
 

1. Advanced Metering Infrastructure (AMI): AMI includes smart meters, networked communication, 
and data management systems. Smart meters provide detailed, real-time data on power use enables utilities 
to track usage patterns, implement price changes, and improve billing accuracy. Consumers also gain from 
enhanced insight into their energy usage, allowling them to make more educated decisions about their 
consumption. 
 

2. Sensors and Measurement Devices: Sensors, such as phasor measurement units (PMUs), provide high-
resolution, time-synchronized data on various grid parameters, including voltage, current, frequency, and 
phase angles. These measurements are crucial for continuous tracking and analysis, helping to maintain grid 
stability and prevent outages. 
 

3. Communication Networks: Reliable and secure communication networks are essential for the 
real-time exchange of data between different grid components. These networks can utilize various 
technologies, including fiber optics, wireless, and power line communication (PLC). The communication 
infrastructure ensures seamless data flow, enabling automated control and coordination across the grid. 
 

4. Control Systems: Advanced control systems are used to monitor and control the grid in real-time. These 
systems take data from sensors and other devices, analyze it, and make decisions to optimize grid 
performance. They can also automate responses to disturbances, improving the grid's reliability and 
resilience. 
 

5. Energy Management Systems (EMS): EMS are software tools utilities use to monitor, manage, and 
enhance the performance of the electrical grid. They provide functionalities such as load prediction, 
generation scheduling, and fault detection. 
 

6. Distributed Energy Resources (DERs): Energy-storing devices, wind turbines, and solar panels are 
examples of renewable energy sources included in DERs. These resources are often distributed across the 
grid and can be located on consumer premises. Integrating DERs into the grid requires advanced control and 
coordination to ensure stability and reliability. 
 

7. Consumer Interfaces: Smart grids provide consumers with interfaces, such as in-home displays and 
mobile applications, to monitor their energy usage and interact with the grid. These interfaces enable 
consumers to take part in demand response programs, adjust their spending based on price signals, and 
contribute to overall grid efficiency. 
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Fig. 2-2 Smart Grid Components 

 
 
2.1.2 Benefits of Smart Grids 

The deployment of smart grid technology offers numerous benefits to both utilities and consumers, 
including: 
 

1. Enhanced Reliability and Resilience: Smart grids improve the reliability of the power supply by enabling 
real-time monitoring and rapid response to faults. Automated control systems can isolate and address issues 
quickly, reducing the duration and impact of outages. The ability to integrate distributed generation 
sources also enhances the grid's resilience to disruptions. 
 

2. Improved Efficiency: Smart grids optimize the generation, distribution, and consumption of electricity, 
reducing losses and improving overall efficiency. Advanced metering and control systems enable better 
demand management, reducing peak loads and minimizing the need for costly infrastructure upgrades. 
Utilities can also implement dynamic pricing, encouraging consumers to shift their usage to off-peak times. 
 

3. Integrated Renewable Energy Sources: One of the key advantages of smart grids is the 
integration of intermittent and decentralized renewable energy sources like solar and wind power. Advanced 
control systems and energy storage solutions help manage the variability of these sources, ensuring a stable 
and reliable power supply. This integration promotes the transition to a more sustainable energy system and 
decreases dependence on fossil fuels. 
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4. Empowerment of Consumers: Smart grids provide consumers with greater visibility into their energy 
usage and enable them to take part in demand response programs. Consumers can monitor 

their consumption in real-time, receive alerts about high usage, and adjust their behavior to save money and 
lessen their environmental impacts. Smart meters and dynamic pricing also lead to more accurate billing and 
improved customer satisfaction. 
 

5. Enhanced Security: Smart grids incorporate advanced cyber security measures to protect against both 
physical and cyber threats. By continuously monitoring the grid and detecting anomalies, utilities can prevent 
and respond to attacks more effectively. This improves the electrical system's overall resilience and security. 
 

6. Economic Benefits: The deployment of smart grid technology creates economic opportunities through 
job creation, increased investments in renewable energy, and the development of new technologies. 
Improved grid efficiency and reduced operational costs also lead to lower electricity prices for consumers. 

 
2.1.3 Challenges of Smart Grids 

In spite of the numerous benefits, the implementation of smart grids also represents several 
challenges that have to be presented: 

1. High Initial Costs: The deployment of smart grid necessitates weighty investment in setup, including 
advanced meters, sensors, communication networks, and control systems. These initial costs can be a barrier 
to adoption, particularly for smaller utilities or those in developing regions. 

2. Cybersecurity Risks: The increased connectivity and digitalization of the grid, make it further vulnerable 

to get cyber-attacks. Ensuring security of the smart grid requires robust cybersecurity measures, continuous 

monitoring, and regular updates to address emerging threats. The complexity of securing a vast and 

interconnected system poses a significant challenge. 

3. Data Privacy Concerns: Smart grids collect large amounts of data on consumer energy usage, raising 

concerns about data privacy. Utilities must implement strong data protection measures to ensure that 

consumer information is secure and used appropriately. Regulatory frameworks are also needed to address 

privacy issues and build consumer trust. 

4. Integration of Diverse Technologies: Smart grids involve the integration of various technologies, each 

with its own standards and protocols. Ensuring interoperability between different components and systems 

is essential for seamless operation. Developing common standards and promoting collaboration between 

stakeholders is crucial to address this challenge. 

5. Regulatory and Policy Issues: The successful deployment of smart grids requires supportive 

regulatory and policy frameworks. To stimulate investment in smart grid technology, governments and 

regulatory agencies must offer incentives and clear standards. Regulatory barriers, such as outdated 

policies and conflicting regulations, can hinder progress and need to be addressed. 

6. Technical Challenges: The implementation of smart grid technology involves complex technical 

challenges, such as ensuring the accuracy and reliability of sensors, managing large volumes of data, and 

optimizing control algorithms. Ongoing investigate and progress are needed for addressing these key 

challenges and improve the performance of grid systems. 

7. Consumer Engagement: Engaging consumers and encouraging them to contribute in request reply 

programs and energy-saving initiatives is critical for the success of smart grids. Utilities need 
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to provide clear information, incentives, and support to help consumers understand and benefit from smart 
grid technology. 

 

 
2.2 Technology in Smart Grids 

 
The technology underpinning smart grids is multifaceted, encompassing various kinds of hardware and 

software components designed to optimize grid performance and facilitate real-time communication. These 

technologies can be broadly categorized into sensing and measurement, control and automation, and 

communication infrastructure. 

Sensing and Measurement: 

Advanced sensors and smart meters, are integral to the functioning of smart grids. PMUs provide high-

resolution, time-synchronized data on grid conditions, allowing for precise monitoring of voltage and current 

at various points in the network. This data is crucial for real-time analysis and decision-making, helping to 

make sure grid stability and trustworthiness. 

Smart meters, on the other hand, provide detailed information on electricity consumption at the 

consumer level. These devices provide mutual connection between the usefulness and the user, facilitating 

dynamic pricing, demand response programs, and more accurate billing. Smart meters also empower users 

to manage their power usage and make knowledgeable verdicts on reducing consumption and costs. 

Control and Automation: 

Automation technologies are crucial for self-healing capabilities of the smart grid’s infrastructure. 

Automated switches that reclosers can quickly isolate faults and restore power, minimizing the impact of 
outages. Distributed control systems (DCS) and Supervisory Control and Data Acquisition (SCADA) systems 

provide centralized monitoring and control, allowing operators to handle the grid proficiently and respond 

to emerging issues [98]. 

Advanced control algorithms and artificial intelligence are used more frequently employed to optimize 

grid operations. Artificial Intelligence can scrutinize big quantities of data/info from sensing systems and 

other sources for forecast potential problems and recommend corrective actions. Machine learning 
algorithms may additionally expand the accuracy of load forecasting, empowering better planning and 

resource allocation. 

Communication Infrastructure: 

Dependable and secure communication structure is the backbone of smart grids. This infrastructure 

enables the real-time exchange of data between various grid components, including sensors, meters, control 

systems, and utility operators. Technologies like fiber optics, wireless networks, and power line 

communication (PLC) are commonly used to establish robust communication links. 

The communication network system within a smart grid has to be resilient, moreover secure to prevent 

disruptions and protect against cyber threats. This requires implementing advanced encryption, 

authentication, and intrusion detection systems. Confirming the security and integrity of information is 

paramount to maintaining grid security and reliability. 
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Integration of Renewable Sources: 

Smart grids are designed to accommodate a various range of electric energy sources, counting renewable 

energy for instance wind, solar, and hydroelectric power. Join in these recurrent and decentralized different 

energy sources into the grid postures significant encounters but also offers substantial benefits in terms of 

sustainability and energy independence. 

Distributed Energy Resources (DERs) for example solar panels on the rooftop and wind turbines from 

different places can be linked to the grid, allowing for the efficient distribution within locally generated 
power. Energy storing systems, like battery, play an essential role in harmonizing supply of the energy, and 

demand. They keep additional energy generated throughout low demand periods and releasing it all through 

peak demand. 

Grid operators use advanced forecasting and optimization algorithms to control the variable nature of 
renewable sources. These algorithms able to predict weather patterns and regulate grid actions 

consequently to ensure a steady and reliable power supply. 

Electric Vehicles (EVs) and Smart Charging: 

The proliferation of electric vehicles (EVs) represents both encounters and chances for smart grids. The 

amplified demand for electricity because of EV charging able to strain the grid, particularly throughout peak 

hours. EVs able to serve as distributed energy resources, providing storage and support for grid stability. 

Smart charging infrastructure allows for the effective supervision of EV charging, optimizing the use of 

available grid capacity. The Vehicle-to-Grid (V2G) system allows electric vehicles (EVs) to return stored 

energy to the power grid, helping to balance supply and demand. This bidirectional energy flow enhances 

grid resilience and facilitates the integration of renewable energy sources. 

Advanced Metering Infrastructure (AMI): 

Advanced Metering Infrastructure (AMI) is a critical component of smart grids, enabling the collection, 

analysis, and management of energy usage data. AMI systems consist of smart meters, communication 

networks, and data management software. These systems deliver real-time data on energy consumption, 

helping utilities optimize grid operations and improve customer service. 

AMI supports request reply programs, whereas customers can regulate their energy usage in reply to price 

signals or incentives. This helps to reduce peak demand and expand grid efficiency. Additionally, AMI enables 

more accurate and timely billing, decreasing the need for manual meter readings and enhancing customer 

satisfaction. 

The Distributed Energy Resources (DERs): 

Distributed Energy Resources (DERs) are limited power production or storage technologies that provide 

an alternative to or improvement upon the traditional electric power system. Systems that combine heat and 
power, wind turbines, solar panels, and battery storage are examples of distributed energy resources (DERs). 

These resources are often located close to where electricity is used, such as at a home or business, and can 

be cast-off to deliver backup power at the time of outages or to reduce demand on the grid during peak 

periods. 

The incorporation of DERs into the grid requires advanced control and coordination to ensure stability 

and reliability. Grid operators use sophisticated software and algorithms to manage the 
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variability of these resources and to optimize their use in conjunction with central generation and grid 
resources. 

Grid Management Software: 

Smart grids rely on sophisticated software to monitor and manage grid operations. This software can 

include Energy Management Systems (EMS), Advanced Distribution Management Systems (ADMS), 

Distributed Energy Resource Management Systems (DERMS)[ 99]. These systems provide utilities with the 

tools they need to monitor grid performance, manage distributed resources, and optimize grid operations. 

EMS are harnessed to keep eye on and control the stream of electricity across the transmission and 

distribution networks. They offer instantaneous data on grid conditions, enabling workers to detect and take 

action to problems quickly. DERMS are used to manage distributed energy resources, optimizing their use in 

conjunction with central generation and grid resources. ADMS provide a comprehensive sight of the 

distribution network, permitting operators to manage grid performance, sense and retort to outages, and 

enhance grid operations. 

Energy Storage Systems: 

In smart grids, energy storage devices play an important role, providing a mechanism to accumulate 
extra energy produced throughout periods of low demand and to issue it during periods of in height demand. 

These systems can comprise batteries, compressed air energy storage, flywheels, and pumped hydro storing. 

Energy storing systems supports to steadiness supply and demand, expand grid stability, and support the 

addition of renewable energy sources. 

When integrating intermittent and variable renewable energy sources like wind and solar, battery 

devices play a critical part. By holding extra energy generated during high renewable output times and 

releasing it during low output periods, batteries provide a consistent and predictable power supply. Lithium-
ion and flow batteries are examples of advanced battery technologies with long cycle lives and high energy 

density, which makes them ideal for grid applications. 

Demand Reply Programs: 

Demand reply program is a key component of smart grids, enabling utilities to manage demand and to 

steadiness supply and demand in actual. This program encourages customers to decrease or shift electricity 

consumption at the time of peak periods, helping to reduce strain on the grid and to evade the need for costly 

infrastructure promotions. 

Demand reply programs can include time-of-use electricity pricing, where electricity fees differ liable on 

the time of day, and straight load control programs, where values remotely manage certain appliances, for 

example air conditioners or even water heaters, to decrease demand during apex periods. These programs 

provide benefits to both utilities and consumers, helping to reduce electricity costs and improve grid 

reliability. 

Micro-grids: 

Small-scale power grids known as "micro-grids" can meaning separately from the main grid or in tandem 

with it. A wide range of power generating sources, including solar panels (PVs), wind turbines, diesel engines, 

and energy storage devices, can be encompassed in them. Micro-grids enable the integration of renewable 

energy sources and offer a way to increase grid resilience. 
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Micro-grids can operate in island mode, where they are disconnected from the primary grid and provide 
power to a specific area, such as a campus or a community. They can also operate in grid- connected mode, 

where they are linked to the primary grid and provide power to the wider grid. Micro-grids offer several 

benefits, including improved reliability, enhanced resilience, and the ability to integrate renewable energy 

sources. 

 

 
2.3 Security Aspects of Smart Grids 

The integration of advanced technologies and the increased connectivity of smart grids introduce new 

security challenges. Ensuring the security of smart grids is critical to protecting the infrastructure from cyber-

attacks and maintaining the reliability of the electricity supply. 

Cyber-security Threats: 

Smart grids are vulnerable to a range of cyber-security threats, including malware, phishing attacks, and 
Denial of Service (DoS) attacks. These threats can undermine the integrity and accessibility of the grid, 

leading to disruptions in power supply and potential damage to critical infrastructure. 

False Data Injection Attacks (FDIAs) are a particularly concerning threat to smart grids. In an FDIA, 

attackers inject false data into the grid's regulator systems, causing the system to make incorrect decisions. 

This can lead to significant disruptions in grid operations, including blackouts and equipment damage. 

Detecting and mitigating FDIAs requires advanced monitoring and analytics capabilities. 

Physical Security: 

In addition to cyber-security, physical security is essential for protecting smart grid structure. 

Substations, transformers, and other critical components must be safeguarded against physical attacks and 

natural disasters. Implementing strong security measures, such as surveillance systems, access controls, and 

physical barriers, can help to protect these assets. 

Data Privacy: 

Smart grids gather vast amounts of data on consumer energy usage, raising concerns about data privacy. 

Protecting consumer data from unlawful access and ensuring compliance with privacy regulations is 

essential. This requires implementing strong data encryption, secure data storage, and access controls. 

Resilience and Reliability: 

Ensuring the resilience and dependability of smart grids is critical to maintaining a stable electricity 
supply. This involves implementing robust grid management practices, redundancy measures, and 

emergency response plans. Advanced analytics and AI can assist in anticipating and addressing potential 

issues, improving the overall resilience of the grid. 

Regulatory and Policy Frameworks: 

Effective regulatory and policy frameworks are necessary for ensuring the security and reliability of smart 
grids. Governments and regulatory agencies are essential for establishing standards, providing oversight, 

and promoting best practices. Collaborative efforts between utilities, technology 
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providers, and policymakers are necessary to address the complex security challenges facing smart grids. 

Security Standards and Best Practices: 

Adopting industry standards and best practices is crucial for enhancing the security of smart grids. The 

International Electrotechnical Commission (IEC) has developed comprehensive frameworks and guidelines 

for smart grid security. These standards offer a systematic method to identifying and mitigating security 

risks, ensuring the confidentiality, integrity, and availability of grid data and operations. 

Understanding the complex nature of smart grids, their technological components, and associated 

security challenges is essential for developing effective strategies to enhance their performance and 

reliability. By utilizing advanced technologies and implementing robust security measures, smart grids can 
provide a more efficient, reliable, and sustainable electricity supply, meeting the growing demand for energy 

in a secure and resilient manner. 

 
2.4 Summary 
 

This chapter digs into the diverse world of smart grids, illuminating their definition, important 
components, benefits, problems, and the technological breakthroughs that underpin them. An updated 
electrical system known as a smart grid uses digital technology to enhance power flow management and 
control from generation to consumption. The combination of smart meters, advanced sensors, automated 
control systems, and robust communication networks collectively aim to make the grid more dependable, 
efficient, and sustainable. Essential components including Advanced Metering Infrastructure (AMI), sensors 
and measuring devices, communication networks, control systems, and energy management systems are 
highlighted for their roles in achieving these goals. 
 

The chapter underlines the many benefits of smart grids, including better stability and resilience, 
improved efficiency, seamless integration of renewable energy sources, consumer empowerment, 
heightened security, and economic rewards. These innovations permit real-time monitoring, improved 
demand control, and more accurate billing, ultimately contributing to overall grid efficiency and 
sustainability. However, adopting smart grids is not without its obstacles. High initial costs, cyber-security 
threats, data privacy concerns, integration of varied technologies, regulatory and legislative challenges, 
technical complexities, and the need for customer interaction are important hurdles that must be overcome to 
ensure the effective adoption of smart grids. 
 

Advanced sensing and measuring technologies, control and automation systems, communication 
infrastructure, and integration of renewable energy sources are critical for optimizing grid performance and 
facilitating real-time communication. Energy storage devices, demand response programs, and the growth 
of micro-grids further boost the grid's capability to balance supply and demand, improve security, and enable 
the integration of renewable energy. 
 

Security considerations, notably cyber-security risks and physical security measures, are crucial in 
securing the smart grid system. Ensuring data privacy, resilience, and reliability through rigorous regulatory 
and legislative frameworks, industry principles, and best practices is crucial for sustaining a stable and secure 
electrical supply. It is vital to have a solid grasp of smart grid technologies, their advantages, and the issues 
they present in order to design successful strategies for boosting grid performance and dependability. 
Through the use of modern technologies and applying tight security measures, smart grids can fulfill the 
growing demand for energy in a secure, efficient, and sustainable manner, paving the way for a resilient and 
future-ready electrical infrastructure. 
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Chapter 3 FDIA Attack models 

 
3.1 Fundamentals of FDIA 

False Data Injection Attacks (FDIAs) are becoming an important concern in the realm of cyber- security, 
especially within smart grids and other critical infrastructures. These attacks involve the deliberate insertion 
of incorrect data into a system to manipulate its operations, mislead decision- making processes, or cause 
physical harm. Understanding the fundamentals of FDIAs is essential for developing effective security 
measures to protect modern technological systems from such malicious activities. 
 
Concept and Mechanism of FDIA 

FDIAs take advantage of vulnerabilities in a system's data acquisition and communication processes. By 
injecting false data, attackers can distort the system's perceived state, leading to incorrect outputs or actions. 
This type of attack is especially deceptive, as it can be executed without directly tampering with the physical 
components of the system. 
 

Reconnaissance 
Initially, the attacker collects information about the target system. This includes understanding the 

system's structure, data flow, and communication protocols. Attackers typically employ passive monitoring 
techniques during this phase to avoid detection and to build a comprehensive map of the system's operations. 
 

Vulnerability Identification 
Next, the attacker identifies weak spots in the system where data can be intercepted and altered. 

Common vulnerabilities include unsecured communication channels, inadequate encryption practices, and 
the absence of robust data validation mechanisms. By pinpointing these weaknesses, attackers can 
determine the most effective points of entry for injecting false data. 
 

Data Manipulation 
Following data manipulation, the attacker monitors the system to observe the effects of the injected 

false data. The range of potential impacts can vary widely, from minor operational disruptions to severe 
physical damage, depending on the attacker's objectives. This phase allows the attacker to gauge the 
effectiveness of their actions and make any necessary adjustments. 
 

Impact Assessment 
Following data manipulation, the attacker monitors the system to observe the effects of the injected false 

data. The range of potential impacts can vary widely, from minor operational disruptions to severe physical 
damage, depending on the attacker's objectives. This phase allows the attacker to gauge the effectiveness of 
their actions and make any necessary adjustments. 
 

Persistence and Evasion 
Advanced attackers use strategies to maintain their presence within the system over time while 

avoiding detection. This can involve the use of sophisticated malware designed to be stealthy, exploiting 
zero-day vulnerabilities that are unknown to the system's defenders, or frequently changing their methods 
to stay ahead of security measures. These tactics help attackers remain hidden within the system and continue 
their activities without interruption. 
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Types of Attack Models 

False Data Attack Models: 
 

There are several threat models for false data injection (FDI) attacks targeting the cyber-physical 
infrastructure of the Smart Grid. Some of these models necessitate full knowledge of network data and 
topological configurations, while others can function with limited resources. Moreover, data-driven 
approaches are employed to develop stealthy FDI attacks. This section examines these various FDI attack 
models. 

 

Fig. 3-1 FDIA in SmartGrid 
 

3.1.1 Classification Based on Attack Models 

1) Power Flow Model: While industry-standard state estimators depend on nonlinear AC power flow 
models, most research on FDI attacks is carried out in limited situations and usually uses linear DC- based 
power flow models. Liu et al. [27] were pioneers in FDI attacks under the DC model, followed by studies such 
as [31], [34], [35], [36], and [32]. However, these simplified DC models are not suitable for AC-based SEs due to their 
nonlinear characteristics. 
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such as [43] and [44], have explored FDI attacks under both DC and AC models. A detailed comprehension of 
the structural stuffs of power schemes and the power flow model used is essential for effective vulnerability 
analysis and countermeasures. 
 

2) Network Architecture: 

1. Centralized Attacks: These target the central state estimator by manipulating measurement reports 
from communication devices, which impacts other functions like optimal power flow and economic dispatch. 
Notable studies include [27], [48], [49], and [67]. 

2. Distributed Attacks: These are more challenging in distribution systems due to the requirement for 
local state knowledge. Attacks can inject bad data at the supply source, target energy control instructions, and 
affect communication links. Relevant studies include [56], [55], and [69]. 
 

3) Construction Methods: Various methods for constructing adversarial FDI attacks are discussed, focusing 
on techniques used to manipulate data to compromise power system operations. 
 

FDI attacks require detailed information of network topology, transmission parameters, SE algorithms, 
and BDD methods, assuming significant access to the power system. However, it's unrealistic for adversaries 
to have extensive measurement access. Liu et al. [27] noted that adversaries often face constraints, limited to 
certain sensor readings due to physical defenses or budget constraints. 
 

Liu et al. [27] described adversaries injecting random bad data to disrupt SE performance or targeting 
specific state variables. Research covers both random and targeted FDI attacks impacting SE and additional 
elements, like in [69], where random data injections disrupted energy supply- demand balance. 
 

Kosut et al. [47] and [48] explored stealthy FDI attacks, proposing a detectability heuristic for BDD 
vulnerabilities. They developed an algorithm [48] with two attack types: strong, compromising enough meters 
to make the state unobservable using graph theory, and weak, controlling a particular number of meters. 
 

FDI attacks face challenges as power system topology settings are secure, frequently change, and are 
only accessible to operators' EMS. Intruders have limited physical access and real-time knowledge of 
configurations and physical conditions, such as transformer tap adjustments and circuit breakers. 
 
Attacks with Partial Topology Information: 

Constructing valid FDI attacks typically assumes that adversaries have full access to topology 
information. However, it is practical to assume that adversaries have incomplete knowledge of network 
topology due to limited real-time information about configurations and physical statuses for example 
transformer tap adjustments, circuit breakers, and switches. Realistic FDI attacks can be initiated with partial 
information and constrained resources. 
 

Rahman et al. [31] explored FDI attacks using incomplete topology knowledge from both adversary and 
defense perspectives. Other relevant studies include [35], [36], [39], [58], and [52]. G. Liang et al. [28] reviewed many 
scenarios where adversaries can obtain partial topology information necessary for FDI attacks, including: 
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1. Manual or Online Collection: Adversaries manually collect grid topology information or use 
online methods with their own meters. 

2. Market Database: Adversaries extract topology information from location-based price 
variations. 

3. Power Flow Measurements: Adversaries gather topology data from power flow 
 
Load Redistribution (LR) Attacks: 

LR attacks are a specific type of FDI attack that target load measurements of nodal power injections and 
power flows to create biased load estimates. These attacks can be executed even with limited access to 
certain meters. 
 

Yuan et al. [33] initially formulated LR cyberattacks considering various resource constraints. They 
expanded this framework in [63] to assess two attack objectives: immediate and delayed, utilizing a max-min 
attacker-defender framework. Xiang et al. [62] introduced a corresponding cyber- physical attack on LR, 
generators, and transmission lines, formulated as a two-level optimization problem within the attacker-
defender model. 
 

Moreover, in [64], leveraging local topology attacks from [66] and concepts from [31], the authors devised a 
local LR attack strategy using partial network knowledge. Unlike [31], this approach allows the attacker to 
select any area of interest, not just a specific cut. 
 
Grid Topology Attacks and Line Outages: 
 

Recent research has focused on attacks targeting power grid topology and transmission line outages. 
Traditionally, adversarial models assumed static grid topology, only allowing false data injection. However, 
grid topology often changes due to maintenance and failures. 
 

J. Kim and L. Tong [51] developed a stealthy attack model manipulating both network measurements and 
topology configurations (e.g., transformer taps, circuit breakers) to generate a false topology undetected by 
the state estimator. Their model includes strong and weak attack regimes based on available information. 
 

Studies like [59] examined coordinated cyber-physical attacks causing unnoticeable transmission line 
outages. Adversaries could hide grid topology by injecting false data and coordinating cyberattacks to 
conceal line outages, potentially causing cascading failures. 
 

A heuristic topology attack model in [66] identified attack regions with minimal information. However, 
[51], [59], and [66] did not account for PMUs, which detect outages via deviations in bus phasors. 
 

Building on [59] and [66], [60] suggested masking line outages by manipulating PMU data. Additionally, [61] 
examined the impact of security-constrained financial dispatch on transmission line attack strategies. 
 
Data-Driven Attacks: 

 
Known as blind attacks, these FDI attacks are crafted without antecedent knowledge of the power grid. 

They leverage statistical techniques such as independent component analysis [70], singular value 
decomposition [71], principal element analysis [72], sparse optimization [73], heuristic approaches, and 
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machine learning algorithms. By analyzing correlations in measurement data and topology 
parameters, adversaries can launch undetectable attacks. 
 

Esmalifalak et al.[67] pioneered this approach, using independent component analysis to infer system 
topology and power states from power flow measurements. This method requires statistically independent 
loads and meter data. Singular value decomposition [71] and principal component analysis [72] have also been 
utilized to create stealthy FDI attacks, with PCA-based methods transforming measurements into non-
correlated components. 
 

These methods are effective only in the existence of additive white Gaussian noise (AWGN). Adnan and 
Abdun [34], [32] demonstrated that in the presence of gross errors, these blind attacks fail conventional BDD. 
They proposed a blind attack strategy using matrix recovery to distinguish low- rank measurement matrices 
from gross errors. Similarly, [68] employed low-rank and sparse matrix factorization for data-driven attacks 
on matrices with missing values. 
 

In coordinated cyberattacks, false data attacks target different components of the Smart Grid. Power 
generators, transmission lines, substation networks, renewable energy sources, monitoring and control 
centers, smart electronic gadgets, and network and communication systems are just a few examples of these 
components that are susceptible. 
 

3.1.2 Classification Based on Target Attack Models 

Cyber-physical components are crucial for observing and controlling the Smart Grid, they also expose it 
to different kinds of data breaches, though, affecting the availability, security, and integrity of data. FDI (False 
Data Injection) attacks target components across all Smart Grid domains, such as power generation, 
transmission, distribution, utilization, market activities, and operations. 
 

1. EMS (Energy Management System): The EMS in the control center is a prime target. The state 
estimator, which links cyber and physical spaces, is especially vulnerable because it relies on 
sequential processes. Outputs from SCADA or PMU systems feed into the state estimator, whose 
results are critical for subsequent EMS modules. An FDI attack on the state estimator can cause 
significant errors and deceive system operators without detection. The majority of FDI attack 
methods affect various components, including communication systems, IEDs, AMIs, and power 
system properties. Transmission lines [61][65], network topology [74][51][59], and system observation [62] 
are further targets. 

2. Automatic Generation Control (AGC): Cyberattacks can target communication systems like PMU 
and SCADA since they provide data between AGC and generating units or Networked Control 
Systems (NCSs). Reference [75] shows that adversaries can manipulate the AGC algorithm by altering 
frequency measurements and control commands. In [76], various data integrity attacks on AGC, such 
as scaling, ramp, pulse, and random attacks, are studied. These attacks can provide false system load 
information, altering measurements and generator settings. 

3. Instead of using predefined data integrity models, adversaries often employ intelligent and 
adaptive strategies. To address this, Tan et al. [50] were the first to study false data attacks on AGC sensor 
measurements. They demonstrated that FDI attacks on power flow measurements can cause grid frequency 
to critical levels quickly, bypassing sensor data integrity checks. Further research on FDI attacks targeting 
AGC and its communication structures can be found in [77][78]. 

4. Contingency Analysis (CA): The practicality of FDIs on CA through the SE is examined in [49]. 
Attackers can insert fake data into the SE, misleading the CA process and causing normal transmission lines 
to appear as contingencies. This false information is then embedded in the security-constrained economic 
dispatch (SCED), potentially causing significant impacts (see Section 
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𝑛 

VIII-3). An FDI attack on CA involving security-constrained optimal power flow (SCOPF) and transmission 
line capacities is also discussed in [79], showing that such attacks can lead to overloading conditions on 
transmission lines during certain contingencies. 

5. Distribution Energy Management (DEM): DEM [24] is crucial for managing real-time networks and 
dynamic decisions-making that traditional EMSs cannot handle. DEMs are used in distributed SEs and 
DERs/microgrids to improve efficiency, minimize outages, and maintain stable frequency and voltage levels 
[80]. In spite of their benefits, DEMs are vulnerable to cyberattacks. The impact of FDIs on DEM was studied in 
[69], revealing that manipulated data can cause imbalanced demand and response, increase transmission and 
distribution costs, and compromise the stability of energy supplies. Further research on DEM vulnerabilities 
to false data attacks in dynamic microgrids is presented in [53]. 

6. Communication Systems: Various communication technologies in the Smart Grid are vulnerable to 
FDI attacks [30]. For example, power system measurements can be compromised via the SCADA system [34], 
affecting other elements like the SE or AMI. If attackers access the SCADA system, they can falsify customer 
billing information by damaging AMI. Communication protocols, such as IEC 61850, are also susceptible to FDI 
attacks [30]. Other vulnerable communication systems include NCS [57], WAMS [29], IEEE C37.118 [30], and wide 
area network communication infrastructure. 

7. Intelligent Electronic Devices (IEDs): IEDs connect field devices to communication systems, 
allowing SCADA and SAS to collect essential grid data. FDI attacks can compromise this critical information 
by breaching IEDs [54]. For instance, attackers can alter voltage readings and modify IED settings, causing 
relays to trip. This can lead to abrupt voltage drops below critical levels, resulting in load shedding and 
potentially causing power outages. 
 

3.1.3 Proposed attack models from the literatures 
 

Jie Lin et al. [3] proposed FDIA attack model in the paper on false data injection attacks against 
distributed energy routing in the smart grid involves several key mathematical formulations to describe and 
quantify the impact of such attacks. The model aims to optimize the energy routing 

process by minimizing the cost of energy transmission, represented as: Minimize  {Cost = 
1 

· 
2 

∑𝐿𝑖𝑗∈ L(|𝐸𝑖𝑗| · 𝐶𝑜𝑠𝑡𝑖𝑗)} Subject to: For each supply-node v ∈ NP, ∑𝑖 ∈ 𝑁𝑣 𝐸𝑣𝑖 ≤ 𝑃𝑣 , For each 

demand-node u ∈ ND, ∑𝑗 ∈ 𝑁𝑢 𝐸𝑢𝑗 = − 𝐷𝑢, For all links Lij ∈ L, 𝐸𝑖𝑗 = − 𝐸𝑗𝑖 . The model further 

investigates the impact of false data injection attacks by introducing false energy values and link 
states, represented by 𝐷∗ for forged energy requests, 𝑃∗ for forged energy supplies, and 𝐿𝑆∗ for false 

𝑢 𝑣 𝑖𝑗 
link states. The model also considers metrics like supplied energy loss (Δ 𝐷𝑛 = ∑𝑢𝑖∈𝑁𝐷∗ Δ𝐷𝑢𝑖), increased 

energy transmission cost (Δ𝐶𝑜𝑠𝑡𝑛=Min(𝐶𝑜𝑠𝑡∗ )− Min(Cost)), and the number of outage users, providing a 
comprehensive quantitative evaluation of the attacks' impact on the distributed energy routing process. 
 

Jinsub Kim et al. [51] addresses undetectable topology attacks on the smart grid by modifying the topology 

estimate from 𝐺 = (𝑉, 𝐸) to a different target topology 𝐺  = (V, 𝐸 ). The model assumes that the adversary has 

global information and can intercept and modify both digital network data 𝑠 ∈ 

{0,1}𝑑 and analog meter data 𝑧, resulting in modified data 𝑠  = 𝑠 + 𝑏 (𝑚𝑜𝑑 2) and 𝑧  = 𝑧 + 𝑎(𝑧) , where 𝑎(𝑧) ∈ 

𝐴 ⊂ℝ𝑚 and 𝑏 ∈ {0,1}𝑑. The measurement relationship is modeled by the AC power flow model 𝑧 = ℎ(𝑥, 𝐺) + 𝑒, 

with 𝑥 being the state vector and 𝑒 the additive noise. For DC models, the relationship simplifies to 𝑧 = 𝐻𝑥 + 

𝑒, where 𝐻 is the measurement matrix. The key condition for an undetectable attack is Col(H) ⊂ Col(H̄, A) , 

ensuring the modified measurements 𝑧  = 𝑧 + 

𝑎(𝑧) remain in the column space of the target measurement matrix 𝐻 . This model offers a framework 
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𝑘=1 

to evaluate the vulnerability of the grid and devise countermeasures to secure a subset of meters, thus 

preventing undetectable attacks. 

 
Zong-Han Yu et al. [44] proposed a model in the paper outlines a blind false data injection attack using the 

Principal Component Analysis (PCA) approximation method to bypass the bad data detection (BDD) system 
in smart grids. The model leverages PCA to transform the observation vector into a new vector with 
uncorrelated components, facilitating the construction of a stealthy attack vector a = H PCAc. The state 
estimation problem is represented by z = Hx + v. The PCA matrix H PCA is obtained by performing PCA on 
the dataset z, resulting in the transformed dataset x PCA. The relation between the original state vector x 
and the PCA-transformed vector x PCA is given by 

+ + 
x ≈  P xx PCA , in which P x=H  H PCA and H represents the pseudoinverse of H. The attack is 

considered stealthy as it minimally affects the residue vector r = z − Hx , maintaining a low 

probability of detection by the BDD system. 
 

Ying Sun et al. [35] introduces a novel false data injection attack approach called False Data Proportional 
Attacks (FDPAs). The FDPA model is designed to compromise the state estimation in power systems by 
leveraging local grid topology rather than the full transmission-line admittance values. To achieve this, the 
attacker injects false data evenly to all buses and transmission lines linked to a targeted bus. The power system 
is modeled with 𝑁 buses and described by the undirected graph 
𝐺 = (𝐵, 𝐸), where B represents buses and 𝐸 represents transmission lines. The state variables are denoted as 
x=(𝑥1, ⋯ , 𝑥𝑛)𝑇 and measurements as 𝑧 = (𝑧1, ⋯ , 𝑧𝑚)𝑇, with the relation 𝑧 = ℎ(𝑥) + 𝑒, where 𝑒 represents 
measurement errors. For DC state estimation, the simplified power flow model is 
𝑃𝑘,𝑙 =−𝑏𝑘,𝑙𝜃𝑘,𝑙 , where 𝑏𝑘,𝑙 is the susceptance and 𝜃𝑘,𝑙 = 𝜃𝑘 − 𝜃𝑙. The attack vector a is constructed as 𝑎 = 𝐻𝑐 
for some 𝑐 ∈ 𝑅𝑛, ensuring the attack remains unobservable. By carefully adjusting the injected false data 
Δ𝑃𝑙,𝑖and Δ𝑃𝑖 in proportions related to the local topology, the attacker can bypass traditional bad data 
detection methods. This method was validated through simulations on the IEEE 30-bus test system, 
demonstrating the FDPA's ability to successfully compromise the system's state estimation. 
 

Jiwei Tian et al. [82] introduce a data-driven and low-sparsity false data injection attack strategy in smart 

grids, divided into three stages: Eliminate-Infer-Determine (EID). Initially, intercepted meter data containing 

outliers is preprocessed using the Augmented Lagrange Multiplier (ALM) method to separate the original 

data matrix 𝒁 from the outliers matrix 𝑬 by solving the optimization problem min ∥Z∥∗ + λ ∥E∥1 subject to 

Zoutlier = Z + E. Next, the cleaned data is used to infer the system's incomplete knowledge through parallel 

factor analysis (PARAFAC), which decomposes a fourth- 

order tensor 𝛷 as 𝛷 = ∑𝑙𝑑 ξk × nj ∘ nj ∘ nj ∘ nj. Finally, the inferred system matrix N̂ is utilized to 

design a sparse attack vector ai = N̂I using convex optimization to solve min 
𝑙 

∥ ai ∥0 = ∥ N̂ l ∥0 subject 

to uTl = 1. This method constructs effective and undetectable false data injection attacks by leveraging data-

driven and low-sparsity approaches, ensuring stealthy attacks even with incomplete system knowledge and 

the presence of gross errors in measurement data. 

Thusitha Dayaratne et al. [22] describe a novel high-impact false data injection attack (FDIA) against real-

time pricing (RTP) in smart grids. This attack model focuses on manipulating data to achieve financial 

benefits without compromising the grid's communication channels or components. The RTP scheme that 

divided a day into 48 half-hour pricing slots. A demand coordinator sends a price signal for the next 24 hours, 

consisting of 48 price values, each corresponding to one pricing slot. Household scheduled devices using 
parameters like start times, demand and running duration. The Home Energy 
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Management System (HEMS) schedules devices, incurring an inconvenience cost if a device doesn’t start at 
the preferred time. 

The optimization process involves local optimization for each HEMS and a master optimization by the 

utility company (UC). Each HEMS schedules devices to minimize the overall cost, including the electricity bill 

and the inconvenience cost. The aggregated demand profile is sent to the UC, which adjusts the price signal. 

This process repeats until it converges to the global optimal solution, at which point more cost reduction is 

impossible. 

In the proposed attack model, the attacker focuses on a more realistic and calculated scenario in which 

compromising devices or communication channels are not required. The attacker manipulates their own data 

through HEMS or IoT devices. The attack steps include selecting a device and the corresponding pricing slots, 

s𝑒𝑡𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑑𝑒𝑣𝑖𝑐𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 to the beginning of the particular pricing slot, setting the latest finish time 

(𝑙𝑠) as 𝑙𝑠 = 𝑒𝑠 + 𝑟𝑡 − 1, and increasing the device demand (𝑑𝑛𝑒𝑤>𝑑𝑜𝑙𝑑) to a new value (𝑑𝑛𝑒𝑤). By setting the 

device as inflexible (with fixed 𝑝𝑠 and 𝑙𝑠), the attacker makes sure that the device's start time is not shifted 

by the local optimization . The aim is to force the distributed optimization to shift demand to other time slots. 

The attacker manipulates their own data through HEMS or IoT devices without compromising 

communication channels. Possible methods include increasing the demand value of one or many devices, 
adding fake home devices to HEMS, adding real home devices but disconnecting them once the system 

converges, or collaborating with other households to spread the false demand. 

The experiment setup involves using artificial datasets based on real-world household consumption 

data, including 10,000 households, each with 5-10 devices. Experiments are conducted with datasets of 

varying sizes (500, 1000, 2500, 5000, 7500 households). The impact of the attack is assessed by injecting a 

false demand of 0.1% of the overall demand by increasing the selected device's demand. The other's side 

cost reduction and the total impact on the community's bill and inconvenience are calculated. The false 

demand percentage is gradually rises (up to 5%) and the calculations are repeated. 

Results show that even a 0.1% false demand injection can significantly reduce the adversary's cost. The 

adversary can achieve a cost reduction of up to 28.73% for a 0.5% false demand. The attack is effective 

regardless of the number of participating households, and the false demand percentage is highly correlated 

to the device usage cost for the opponent. 

A small increase in aggregated demand can significantly increase the unit price due to the quadratic 

nature of the price function. The attack causes HEMS to move devices away from the attacked time slots, 

leading to a lower actual unit price for the adversary. This type of attack can be executed by any user without 

compromising the communication channels. The attack demonstrates vulnerabilities in DR systems that rely 

solely on optimization. 

In conclusion, the proposed high-impact FDIA against RTP in smart grids shows how an adversary can 

manipulate demand data to achieve significant financial benefits. The attack does not require technical skills 
or compromising the grid's communication channels, making it feasible for any user within the system. The 

results highlight the need for robust false data detection mechanisms to ensure the reliability and efficiency 

of DR schemes in smart grids. 

Yuancheng Li et al. [58] proposed model introduces a method for constructing false data injection (FDI) 

attack vectors without requiring complete knowledge of the power system's network topology. Initially, 

limited topology information is mapped to a high dimension using Kernel Independent 
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Component Analysis (KICA), generating a Jacobian matrix ( 
𝜕𝐻(𝑥) 

𝐻 ≡ ( ∣ ) based on incomplete 

𝜕𝑥 x=0 

topology information. This helps approximate the current state of the power system represented by the  

state  variables  vector  ( 𝑥 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]𝑇.  The  measurements  vector  is  denoted  as 

𝑧 = [𝑧1, 𝑧2, . . . , 𝑧𝑚]𝑇, and the attack vector as 𝑎 = [𝑎1, 𝑎2, . . . , 𝑎𝑚]𝑇. Kernel independent components are 

represented by 𝑣𝑘 for 𝑘 = 1,2, . . . , 𝑝. The objective function for the attack vector is formulated as U = 
pnTa + q 

2 

exp(rTDr)/λ
+1 

, where 𝑟 = 
𝑎 

𝐿 
is the proportion of attacked vectors to measurements. The 

optimization constraints include ∥ a − Hpc ∥ ≤ τ , N (a + L) ≥ 0, and aTÑa = 0.The Lagrangian 
function is 𝐿(𝑎, λ1, λ2, λ3) =U(a)+ λ𝑇h1(a) + λ𝑇h (a) + λ𝑇h (a), and the attack vector is updated by 

1 2  2 3  3 
maximizing 𝑑𝑘𝛻𝑈(𝑧 = (𝑎 )𝑇 1  

𝑇 
subject to ℎ (𝑎 ) + 𝛻ℎ (𝑎 )𝑇𝑑 ≤ 0, ℎ (𝑎 ) + 

𝑘 + 2 𝑑𝑘 
𝐻𝑘𝑑𝑘 

1 𝑘 1 𝑘
 𝑘 

2 𝑘 

𝛻ℎ2(𝑎𝑘)𝑇𝑑𝑘 𝑎𝑛𝑑 𝛻𝑔(𝑎𝑘)𝑇𝑑𝑘 = 0. The Jacobian matrix approximation is = 𝐻𝑥 + 𝑒 = Hpx + e , and the 

eigenvalues of kernel independent components are denoted as K̃ =diag(λ1, λ2,..., λ𝑝). State estimation follows 

𝑧 = ℎ(𝑥) + 𝑒. This method is validated through experiments on various IEEE bus systems, demonstrating its 
effectiveness in constructing attack vectors rapidly and with high success rates, even with limited 
measurements and incomplete topology information. 
 

 
3.2 Impact of FDIA on Smart Grids 

False Data Injection Attacks (FDIA) represent a major cybersecurity threat to smart grids, which are 
modern electricity networks that utilize digital communications technology to monitor and control 
electricity flow. The impact of FDIA on smart grids can be profound and multifaceted, affecting various 
aspects of grid operations, economic stability, and security. 
 

Operational Disruption 
FDIA can severely disrupt the usual operation of smart grids by adding erroneous data into the grid's 

operational data streams. This manipulation can lead to several operational inefficiencies: 
• Energy Routing Inefficiencies: Manipulated data about energy demand and supply can cause 

suboptimal routing decisions. Energy may be directed along inefficient or even non-existent paths, 
increasing transmission costs and reducing overall system reliability. This inefficiency not only raises 
operational costs but can also cause energy shortages in areas with falsely reported high demand. 

• Grid Imbalance: By misrepresenting the actual state of the grid, FDIA can create artificial 
imbalances. For instance, false demand-side data might show an increased energy need, prompting the grid 
to reroute energy unnecessarily, leading to potential overloads or shortages. Similarly, supply-side attacks 
that misrepresent available capacity can cause incorrect energy allocation, resulting in either excess or 
insufficient energy distribution. 

• 
Economic Consequences 

The economic impacts of FDIA are substantial, affecting both individual users and the overall market. 
• Manipulation of Real-Time Pricing: FDIA can be used to manipulate real-time pricing (RTP) 
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mechanisms, allowing attackers to gain financial benefits. For example, by falsifying their energy demand 
data, an attacker can influence the distributed optimization process used in RTP, thereby reducing their 
electricity costs while increasing costs for other consumers. This not only undermines the fairness of the 
energy market but also leads to economic losses for other users and the utility company. 
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• Increased Operational Costs: The inefficiencies caused by FDIA, such as energy being routed 
through suboptimal paths, can significantly increase operational costs. Utility companies may have to invest 
more in managing these inefficiencies, which can translate to higher costs for consumers. 
 
Security and Reliability 

FDIA creates major concerns to the security and reliability of smart grids. 
• Compromised State Estimation: Smart grids rely on accurate state estimation to function 

effectively. FDIA can manipulate the data used in state estimation, leading to incorrect assessments of the 
grid's state. This can prevent grid operators from making informed decisions, potentially leading to incorrect 
operational responses and further destabilizing the grid. 

• Bypassing Detection Mechanisms: Advanced FDIA can be designed to bypass traditional detection 
mechanisms. For example, attacks that align injected errors with the grid's operational data can avoid 
detection by standard residual-based bad data detection systems. This makes it challenging to identify and 
mitigate such attacks promptly. 
 
Increased Vulnerability 

Smart grids are particularly vulnerable to FDIA due to their reliance on digital communications and data. 
• Exploitation of Data Collection and Transmission: FDIA can exploit vulnerabilities in the data 

collection and transmission processes of smart grids. By injecting false data at various points in the data flow, 
attackers can cause widespread disruptions and inefficiencies. This exploitation can lead to a breakdown in 
the grid's ability to respond to real-time conditions accurately. 

• Sophisticated Attack Techniques: Attackers can employ sophisticated methods, such as Principal 
Component Analysis (PCA) or Kernel Independent Component Analysis (KICA), to craft undetectable FDIA 
even with limited information about the grid's topology [100]. These sophisticated methods further 
complicate the detection and mitigation of such attacks. 
 
Impact on Dynamic Partitioning 

Dynamic microgrid partitioning is essential for optimizing energy distribution within smart grids. 
FDIA can significantly disrupt this process. 

• Misreported Supply and Demand: FDIA can manipulate the data used in dynamic partitioning by 
under-reporting energy supply or over-reporting energy demand. This can lead to inefficient microgrid 
segmentation, affecting the dependability and effectiveness of energy distribution within the grid. As a result, 
operational failures and increased energy losses can occur. 

• Operational Failures: Disrupted partitioning can cause certain areas within the grid to experience 
energy shortages or surpluses, leading to operational failures. This imbalance can be particularly 
problematic during peak demand periods, potentially leading to widespread blackouts or brownouts. 
 
Systemic Risks 

The interconnected nature of smart grids means that a localized FDIA can have widespread effects: 
• Cascading Failures: Disruptions in one part of the grid can quickly cascade to other parts, affecting 

broader grid stability and performance. This interconnectivity can amplify the impact of FDIA, turning what 
might have been a localized issue into a major grid-wide problem. 

• Grid Stability: FDIA can undermine the overall stability of the grid by causing unpredictable 
fluctuations in energy supply and demand. This can make it challenging for grid operators to make 
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sure a stable and dependable energy supply, leading to frequent adjustments and potential 
overreactions that can further destabilize the grid. 
 

The impact of FDIA on smart grids underscores the critical need for robust cybersecurity measures. 
These attacks can disrupt operations, misallocate resources, cause economic losses, compromise security, 
increase system vulnerabilities, affect dynamic partitioning processes, and introduce systemic risks. 
Ensuring the reliability and efficiency of smart grids requires comprehensive security strategies to detect 
and mitigate FDIA, safeguarding the grid's operational integrity and economic stability. 
 
3.3 Summary 

False data injection attacks (FDIAs), which target smart grids' digital communication and data 
processes, are a severe concern. . These attacks can disrupt operations, mislead decision-making, and 
compromise the security and reliability of the grid. FDIAs can cause operational inefficiencies, economic 
losses, and systemic risks, impacting various aspects of grid operations, economic stability, and security. 
 
Understanding the foundations of FDIAs, including their concept, mechanism, and impact, it's important to 
reducing these risks. FDIAs exploit vulnerabilities in data acquisition and communication processes, 
manipulating data to distort the system's perceived state. Attackers use reconnaissance to gather 
information, identify vulnerabilities, manipulate data, assess impact, and evade detection. Various attack 
models exist based on power flow models, network architecture, construction methods, and data-driven 
approaches. 
 
The impact of FDIAs on smart grids is multifaceted. They can disrupt operational efficiency, manipulate real-
time pricing, increase operational costs, compromise state estimation, bypass detection mechanisms, and 
exploit vulnerabilities in data collection and transmission. FDIAs also affect dynamic microgrid partitioning, 
leading to operational failures and systemic risks like cascading failures and grid instability. 
 
In conclusion, protecting smart grids from FDIAs requires comprehensive cybersecurity measures. 
Understanding the attack models, vulnerabilities, and potential impacts is crucial for developing effective 
security strategies. By implementing robust security measures, smart grid operators can safeguard the grid's 
operational integrity, economic stability, and overall reliability. 
 
 

 
Chapter 4 Neural Network Based Suppression Method 

 
4.1 Overview of Neural Networks 

Machine learning algorithms have a subclass called neural networks that are designed to identify patterns. 

They harness a sort of machine insight, labeling, and grouping of raw input to know sensory data. They are 

made up of layers upon layers of networked nodes, or neurons, with the capacity for each layer to acquire 

increasingly intricate data representations. In applications like picture and speech recognition, language 

translation, and gaming, where the connection between inputs and outputs is extremely nonlinear and 

complicated, neural networks perform very well [84]. Neural networks are depending on the knowledge of false 

neurons, which are modeled after biological neurons present in the human head. Based on applied weights 

and activation goals, these artificial neurons process input data and generate output signals.
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Neural networks are characterized by their architecture, which incorporates the input layer, unseen 

layers, and the yield layer or output layer. The input layer takes the raw data, the hidden layers examine the 

data through several transformations, and the output layer offers the ultimate forecast or classification result. 

The learning method in neural networks encompasses modifying the weights of the linking between neurons 

to decrease the error between the expected output and the actual output. This operation is often done by a 

method called back propagation, which propagates the error backward through the network to bring up-to-

date the weights [85]. 

4.1.1 The Convolutional Neural Networks 

CNNs (Convolutional Neural Networks), a system of neural networks, typically used for processing 

structured grid data like photographs. CNNs are planned to adaptively and automatically acquire three-

dimensional hierarchies of information as of input photos. They apply a mathematical procedure called 

convolution, which captures the local relationships in the input data [86]. The prime components of CNNs 

contain three layers. They are convolutional layers, fully linked layers.and pooling layers. 

Convolutional Layers: These layers use a set of filters in the input, each making a feature map that shows 

specific features of the input, for instance, colors, textures, or edges. The filters slide over the input data, 

creating a map of activations recognized as feature maps Each filter is designed to detect a precise pattern 

in the data, enabling the network to learn compound features at multiple levels of abstraction. 

• Fully Connected/Linked Layers: These layers are harnessed at the end of the network to combine 

the features extracted by prior layers to produce predictions. Allowing the model to integrate all the 

learned features for the last output, every neuron in an entirely connected layer is linked to all 

neurons in the preceding layer. The fully linked or connected layers translate the high-level feature 

representations into the final classification or regression outcomes. 

• Pooling Layers: These layers decrease the dimensionality of each feature map while retaining the 

most significant information. Pooling is typically performed using operations like max pooling or else 

average pooling, which aid in reducing the computational complexity and controlling over-fitting. By 

down-sampling the feature maps, pooling layers confirm that the network is further strong to 

dissimilarities in the input data, such as translation and rotation. 

CNNs have been extremely fruitful in tasks for example object detection, image sorting, and segmentation, 

largely because of their capability to capture spatial hierarchies in images. The hierarchical structure of CNNs 

enables them to study low-level properties like ends and textures in the primary layers and high-level 
features like shapes and substances in the deeper layers [87]. Notable applications of CNNs include facial 

recognition schemes, autonomous vehicles, medical image analysis, and more. 

 

 
4.1.2 Recurrent Neural Networks 

One kind of neural network entitled recurrent neural networks (RNNs) is designed on the way to identify 
patterns in data sequences, including time series text, financial data, speech, and video. RNNs have an inner 

memory that permits them to maintain info about aforementioned inputs and use this information to 

influence the current output. This memory is built harnessing loops within the network, enabling the 

retention of sequential data [88]. 

• Hidden State: The hidden state, which stores details on the order of inputs that have been processed 

thus far, is the fundamental building block of RNNs. In each time step, the hidden state is updated 

according to the prior hidden state and the present input. This makes the system suitable for 

sequence modeling by allowing it to maintain a dynamic state that changes over time. 
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• Recurrent Layer: This layer applies the same set of weights to the input at each time step, which 

allows the network to handle orders of fluctuating lengths and maintain temporal information. The 

shared weights ensure that the network can generalize across different parts of the sequence, 

capturing temporal dependencies and patterns. 

• Long Short-Term Memory (LSTM) & Gated Recurrent Units (GRU)[101]: These are distinct types of 

RNNs intended to process the problem to remove gradients that can occur in regular RNNs. LSTM 

networks use gates to control the flow of data, allowing them to maintain and bring up-to-date long-

term dependencies in the information. GRUs make simpler the LSTM construction by merging the 

forget and input gates into a solo bring up-to-date gate. Both LSTM and GRU units are capable of 

learning long-range dependencies, making them effective for tasks involving long orders. 

 

RNNs are widely harnesses in applications for instance language modeling, speech understanding, and 

machine translation, where understanding the context and sequence of information is crucial. They excel in 
tasks where the temporal dynamics of the data are important, allowing the model to learn and predict based 

on sequential patterns. Advanced applications of RNNs include natural language processing, music 

composition, and video analysis [88]. 

In summary, neural networks, particularly CNNs and RNNs, have transformed the direction of machine 

learning by enabling models to automatically learn and extract meaningful patterns from complex data. Their 

architectures, designed to handle spatial and temporal dependencies, respectively, make them powerful 
tools for a broad range of applications. Fig. 4-1 showing Neural Network [83]. 
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Fig. 4-1 Neural Network 
 

 
4.1 FDIA detection and positioning solution based on SA-DCNN 

 
4.1.1 SA mechanism 

The idea of attention was initially proposed in biology and has gradually developed into an important 

research field in cognitive science. It refers to a complex cognitive ability that humans have, that is, selectively 

focusing on certain aspects or characteristics of information in a specific time and space, and ignoring other 

perceptible information [90][91] . Under the SA mechanism, autonomous prompts are called queries. Given any 

query, attention weights can be calculated to guide the selection of optimal sensory inputs. These sensory 

inputs are called values, and each value 
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1 N 

i i i 

q k v 

associated with a key. Based on this, we can assume that the input sequence is X  [ x ,..., x  ]  RDx N 

and the output is H  [h ,..., h ]  RDv N  , the specific calculation process of the SA mechanism is 
1 N 

shown in Fig. 4-2 [89]: 

(1) Suppose the input sequence is xi , primary linearly plot/map the input sequence into three 

vector units, namely key vector k  RDk , query vector q  RDk , and value vector v  RDv , and for 

the whole input sequence X , the linear mapping procedure can be obtained by the following 

formula: 

 

Q  W X  RDk N 
q 

(4-1) 

K  W X  RDk N 
k 

(4-2) 

V  W X  RDv N 
v 

(4-3) 

Where, W  RDk Dx ， W  RDk Dx ,W  RDv Dx are respectively the parameter matrices 

used for 

learning and training in the linear mapping process [96], and Q  [q1 ,..., qN ] , K  [k1,..., kN] , 

V  [v1,..., vN] ,are  matrices  composed  of  query vectors,  key vectors  and  value  vectors 

correspondingly. 

 

(2) For the query vector 

as: 

 

 
qn  Q , after passing the SA mechanism, the output vector 

 

 
hn is expressed 

 
hn  attention(qn , (K ,V )) 

  v  
exp(s(kj , qn )) 

v N N 
  nj  j N j 

j 1 j 1 exp(s(k , q )) 
i n 

i 1 
N 

  soft max(s(kj , qn ))v j 
j 1 

 

 
(4-4) 

 

 
Here, n, j [1, N ] represents the location of the output vector sequence and the input vector 

sequence, nj denotes the weight of the n th output vector focusing on the  j th input vector, 

soft max( ) represents the normalization function, and s(k , q )  kT q represents the scoring 
j n j  n 

function. In order to reduce the normalization error, the attention marking function is scaled and 
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simplified, so the output is H denotes as: 

 
KT Q 

H  soft max(  )V 
Dk 

(4-5) 

 

Among them, Dk represents the input vector dimension. 
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The SA mechanism effectively converts the input sequence into a vector representation containing a 

large quantity of attention data, reducing the learning of useless data. It can also "dynamically" generate 

different connection weights when processing variable-length sequences, improving the training model’s 

performance. Since it is problematic for CNN to learn the long- distance dependencies of sequences, 

embedding the SA mechanism into DCNN as a layer of the neural network (NN) can improve the effectiveness 

of covert FDIA detection and positioning. 

N 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Dx v 

 
 
 
 
 
 
 
 
 
 
 

 
Dv 

 
V 

Fig. 4-2 SA-The calculation process of the mechanism 
 

 
4.1.2 SA-DCNN framework and FDIA detection and positioning process 
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4.1.2.1 Multi-label classification 

From a mathematical point of view, detecting the existence of FDIA in the power system can be seen 

dividing the entire measurement vector hooked on two categories: presence and absence. Therefore, FDIA 

detection for single-label classification based on machine learning algorithms is a very simple problem. 

However, identifying the location of the attack requires multi-label classification, which is a relatively SA-

DCNN training process 

The SA-DCNN structure is exposed in Fig. 4-3 and whereas contains an input layer, three 

convolutional layers, a flat layer, an SA layer, a fully connected layer and finally ends with an output 

layer. The input layer zt  [zt , zt ,..., zt ] represents the input data with time measurement of n at the 

1 2 n 

time of t , and y
t 

 [ y
t 

,..., y
t 

]represents the determined input data label. 
1 n 

 

 
Fig. 4-3 SA-DCNN framework 

 
Inatially, after inputting zt into the primary convolutional layer, information features are 

excavated through nonlinear transformations such as convolution operations, batch normalization, and the 

use of ReLU activation functions. The c1, j th feature map of the first convolutional layer j 

generated by zt can be expressed as: 
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c  Re LU (zt * h  b ) 
1, j 1, j 1, j 

(4-6) 
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i 

1 n D D 

 
l1, j l 

z
t 

* h  (h )[i]  (z)[i  k  
 1, j  

] 
1, j 1, j 

2 k 1 

(4-7) 

Here, h1, j denotes the j th convolution kernel of the initial convolution layer, b1, j presents the 

length of convolution kernel, and denotes the relevant bias of the first convolution layer. 

After that all convolutional layers execute the same convolution action, and the output of the earlier 

convolutional layer is used as the input of the next convolutional layer. Based on this, the 

output of q 1 the previous convolutional layer is input to the cq-1 th convolutional layer, and that 

can be stated as follows: 
 

cq, j  Re LU (cq-1 *hq, j  bq, j ) 
(4-8) 

 

 

In this equation, cq, j denotes the j th feature map in the q th convolutional layer. In order to expand 

the efficiency of sensing long sequence data, the output of the last convolutional layer, i.e., the features 

learned by the qmax layer, is input to the SA layer. The production of this layer can be attained by formula (4-

5). Then the feature output of the SA layer is overextended, input into a fully connected layer, and triggered by 

means of the activation function ReLU, that can be unambiguously stated as the subsequent formula: 

 

cF  Re LU (wF  cs  bF ) 
(4-9) 

Here, cs 、 cF 、 wF 、 bF denote the input, output, weight and bias relations of the fully 

connected layer respectively. 

Thereafter, the sigmoid function is harnessed to classify the output of the output layer, and the results 

are as follows: 

 

 

ŷ t   sigmoid(w  c  b ) 
D F D 

(4-10) 

 

Here, ŷ
t  

 [ ŷ
t  

,..., ŷ
t  

]represents the last result of multi-label classification; w 、b represents 

the weight and bias of the output layer. It should be noted that in order to expand the sensitivity of the 

convolution action to positional features, the entire network does not use the pooling layer, so that the 

algorithm can achieve better detection and positioning performance. 

Finally, SA-DCNN model classification results, ŷ
t  

, i  1,..., n are associated with the detection 

threshold  , to regulate the false data existing in the measurement data, which can be expressed as 

follows: 
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𝒊 𝒊 

𝒊 𝒊 

 
𝑖𝑓 { 

𝒚̂ 𝒕 ≥ 
 
→ 𝒚̂ 𝒕 = 𝟏 (𝒇𝒂𝒍𝒔𝒆 𝒅𝒂𝒕𝒂 )  

(4-11) 

𝒚̂ 𝒕 < 
 
→ 𝒚̂ 𝒕 = 𝟎(𝒏𝒐𝒓𝒎𝒂𝒍 𝒅𝒂𝒕𝒂) 
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i When ŷ
t 

is greater than  , assign it 1 directly and classify it as false data, otherwise assign it 0 

and classify it as ordinary data. After detecting false data, the attack area of the false information can be 

located based on multiple labels [96]. 

The overall process of realizing FDIA recognition and positioning by dint of SA-DCNN is shown in Fig. 4-4. 

 

 
Fig. 4-4 Detection and positioning flow chart 

 
 
4.2 FDIA data recovery solution based on AE-LSTM 
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4.2.1 Auto-encoder model 
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the input, the decoder excerpts feature from the feature encoding part. At present, many papers detect FDIA 
in power systems by comparing the errors between generated data and input data [94][94][95], and achieve very 

good results. In this paper, AE is mainly used to detect false data. To restore normal data instead of detecting 

FDIA, with the help of the AE model, corrected data with the same distribution pattern as the input can be 

generated, and the corrected data can be used to replace the detected false attack data, thereby achieving the 

recovery of the original data. The effect of data recovery can be verified with the help of the aforementioned 

SA-DCNN. 

Suppose a time-specific multivariate sequence data set is X [xt , xt ,..., xt ] , where m 
1 2 m 

represents the input feature dimension, and the AE model can be expressed as [97]: 
 

  : x  H : fe (x, e ) 

 : H  x : f (x,  ) 
 d d 

(4-13) 

 
 

,  represent the encoding and decoding change method respectively. Among them, H presents the 

minimum feature space, fe , fd presents the nonlinear system in the encoding and decoding process 

respectively, e  {We , be } and d  {Wd , bd } , denotes the AE model training weight and bias 

respectively, x and x denotes the input and produced data respectively. In general, H  fe (We x  be ) 

and x  fd (Wd H  bd ) are occupied as normal operation. The optimal θe , θd  can be found by 

minimalizing the residual difference between the input data and the generated data as: 

 

{θe ,θd }  arg min x  x 

θe ,θd 
2 

(4-14) 

 

 
In order to further improve the adaptability of the AE model, reduce the dependence on time characteristics, 

and reduce the over-fitting of the model, they use the recurrent neural network to learn the characteristics 

of sequence data and replaces the hidden layer in AE with LSTM to form AE-LSTM. Improve the effectiveness 

of data-driven algorithms in restoring false data to normal data. 

4.2.2 Data recovery process based on AE-LSTM 

The LSTM is the further development of RNN and can often be used to solve problems such as gradient 

disappearance that happen during long sequence data training. Due to the introduction of gates and memory 

neurons, the LSTM network can not only control the transmission of input, output and hidden states, but also 

reduce over-fitting problems during the exercise process. The LSTM network model is exposed in Fig. 4-5. 
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Fig. 4-5 LSTM network model 
 

For example there are h hidden sections, the input is Xt , the present time step state is Ht , the 

memory neuron is Ct , the previous time step hidden state is Ht -1 , and the memory neuron is Ct -1 . 

The candidate neuron is Ct . At the corresponding moment, the input gate is It , the forget gate is Ft 

, and the output gate is Ot . The calculation process of LSTM is as follows [97]: 

 
It   ( XtWxi  Ht -1Whi  bi ) (4-15) 

Ft   (XtWxf  Ht-1Whf  bf ) (4-16) 

Ot   ( XtWxo  Ht -1Who  bo ) (4-18) 
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Ct  tanh( XtWxc  Ht-1Whc  bc ) 
(4-19) 

𝑪𝒕 = 𝑭𝒕 ⊙ 𝑪𝒕−𝟏 + 𝑰𝑻 ⊙ 𝑪 𝒕 (4-20) 

𝑯𝒕 = 𝑶𝒕 ⊙ 𝐭𝐚𝐧𝐡(𝑪)𝒕 (4-21) 
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d e 

Where, Wxi 、Wxc 、Whi 、Whf 、Who 、Whc ,Wxf 、Wxo 、represent the relevant weight matrix of 

the input data Xt respectively, bi 、bf 、 bo 、 bc are the connection bias terms respectively, and  

is the activation functions, ⊙ represent the multiplication of each element. 

The inflow and outflow of information controlled by the forget gate and input gate of LSTM, thereby achieving 

more precise control of past memory information and current new data, thereby improving the effect of 

prediction tasks [102]. Specifically, when the output gate is near to 1, all memory info can be transferred to the 

prediction part, and when the output gate is close to 0, only the data in the memory cell is retained without 

updating the hidden state. This mechanism can effectively regulate the model's training process and improve 

its efficacy. 

As mentioned before, in addition to detecting and locating attacked power grid data, accurate recovery of 

operating data is also crucial. The AE system can effectively decrease the dimensionality of data features, and 

the LSTM model can well mine the historical characteristics of time series data. Combining AE and LSTM 

models can deeply capture the spatiotemporal correlation of power grid operating data, thereby generating 

corrected data with the same distribution as the measured data, and using it to replace the detected false 

attack data, thereby achieving accurate recovery of the original data. The LSTM layer represented by 

formulas (4-15)-(4-21) is an alternative implementation of the traditional AE hidden layer encoding and 

decoding formula [95]. The designed AE-LSTM overall network model is shown in Fig. 4-6. The process for the 

defender to generate correction data based on this model is shown in Fig. 4-7, in which the residual detection 

is calculated as follows: 

r(xt )  xt  f LSTM ( f LSTM (xt ,θ ), θ ) 
i i d e i e d  2 

(4-22) 

Where, f LSTM , f LSTM represents the encoding and decoding nonlinear functions of AE-LSTM 

respectively [94][95]. If the residual error generated by the corrected data is lesser comparing the set threshold, 

the data correction that is considered successful. Thereafter, recovery data can be generated by replacing the 

false attack data at the conforming spatiotemporal location along with the generated correction data. 
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Fig. 4-6 AE-LSTM network model 
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Fig. 4-7 AE-LSTM Generate revised data flow diagram 
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4.3 Summary 
 
This chapter explores the complexities of neural networks, with particular attention to the two models that 
have transformed machine learning: recurrent neural networks (RNNs) and convolutional neural networks 
(CNNs). RNNs are decent at processing sequential input like voice and language, while CNNs are decent at 
jobs like object detection and image categorization. After examining their designs and essential elements that 
allow them to recognize intricate patterns in data, such as hidden states in RNNs and convolutional layers in 
CNNs. 
 
We also present the integration of the self-attention (SA) mechanism into deep convolutional neural 
networks (DCNNs), which is a cognitive skill that resembles human attention. With SA, the network performs 
better at tasks like fake data injection attack (FDIA) detection and power system location by capturing long- 
distance relationships in sequences. 

 
Here, also touch on the application of LSTM networks and auto-encoders (AE) to FDIA data recovery. While 
AE-LSTM assists in retrieving the original data by producing corrected data with the same distribution 
pattern as the input, AE assists in identifying fraudulent data. To reduce the remaining discrepancy between 
the input data and output data and essentially restore normal data, this method entails encoding and 
decoding the input data. 

 
Overall, this chapter shows how neural networks may be harnessed to learn intricate forms from data and to 
solve practical issues like data recovery in power systems and FDIA detection. These networks' capabilities 
are further enhanced by the combination of SA and LSTM, which makes them useful instruments for 
guaranteeing the dependability and security of power systems. 

 
Operational Implications: 

FDIA can severely disrupt the normal operations of smart grids. By manipulating energy demand and 

supply data, attackers can cause inefficient energy routing and imbalances within the grid. For instance, 

erroneous demand-side information may force the grid to reroute energy unnecessarily, overloading certain 

areas. Conversely, supply-side attacks might misrepresent available capacity, leading to improper energy 

distribution. These operational inefficiencies not only increase transmission costs but also compromise 

overall system reliability. Furthermore, these disruptions can lead to increased wear and tear on infrastructure, 

requiring more frequent maintenance and potentially shortening the lifespan of critical components. 

The necessity for robust systems to identify and mitigate FDIAs is crucial to maintain seamless smart grid 

operations. Real-time monitoring and advanced analytics can help in early detection and response to such 

anomalies. It is also vital to implement automated control systems that can dynamically respond to perceived 

risks. By integrating machine learning and artificial intelligence, smart grids can adapt to become more 

resilient against such sophisticated threats. This proactive strategy not only supports in preserving 

operational integrity but also increases the grid's capacity to recover fast from any interruptions produced 

by FDIA. 

Economic Consequences: 

The economic impact of FDIA extends to both individual consumers and the broader market. Attackers can 
exploit real-time pricing mechanisms to gain financial benefits at the expense of utility companies and other 

consumers. For example, manipulating energy demand statistics can reduce the attacker’s electricity bill 

while increasing costs for others, thus undermining market stability and fairness. The resultant financial 

losses and increased operational costs necessitate higher investments from utility providers to manage these 
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inefficiencies. This can lead to higher consumer expenses as utility providers pass on these costs. 

Moreover, the uncertainty introduced by FDIA can deter investment in smart grid technologies. Potential 

investors may view the smart grid as a high-risk venture, slowing down the deployment of advanced 

technologies that could otherwise improve grid efficiency and sustainability. The economic repercussions also 

extend to the macroeconomic level, where the stability and reliability of the energy supply are crucial for 

industrial productivity and economic growth. A compromised smart grid can lead to increased operational 

costs, which, in turn, can drive up energy prices, affecting the competitiveness of industries relying on stable 

and affordable energy. 

Security and Reliability Threats: 

FDIA postures critical threats to the security and reliability of all kind of smart grids. These attacks can 

compromise state estimation processes, leading to inaccurate assessments of the grid’s condition. As a result, 

grid operators may struggle to make informed decisions, potentially causing inappropriate operational 

responses and further destabilizing the grid. Advanced FDIAs can bypass traditional detection mechanisms, 

aligning injected errors with operational data to avoid detection. This underscores the necessity for effective 

detection and extenuation methods to ensure the security of the grids. 

The growing complexity of smart-grid infrastructure, along with its integration for distributing energy 

resources, IoT devices, and advanced metering infrastructure, expands the attack surface for cyber threats. 

Ensuring robust cybersecurity measures involves not only the deployment of advanced detection algorithms 
but also the implementation of stringent access controls, continuous monitoring, and regular security audits. 

Additionally, building a culture of cybersecurity awareness among all stakeholders, including utility 

personnel and consumers, is crucial. Education and training programs can help in recognizing potential 

threats and responding effectively. 

Vulnerability of Smart Grids: 

Smart grids are particularly susceptible to FDIAs because of their reliance on digital communication and data 

collection processes. Attackers can exploit vulnerabilities in these processes, causing widespread 

disruptions and inefficiencies. Sophisticated attack systems, for example Principal Component Analysis (PCA) 

and Kernel Independent Component Analysis (KICA), enable attackers to create undetectable FDIAs even 
with limited knowledge of the grid’s topology. The complexity of these threats makes detection and 

mitigation more challenging. 

Furthermore, the decentralized nature of smart grids, with multiple entry points for data collection and 

transmission, increases the potential for security breaches. Ensuring end-to-end security across all 

components of the grid is paramount. This includes securing communication channels, protecting data 

integrity, and ensuring the reliability of sensor data. Adopting a multi-layered security approach, which 

combines physical security measures with advanced cybersecurity protocols, can help in mitigating these 

vulnerabilities. Frequent penetration tests and vulnerability assessments are also necessary to find possible 

vulnerabilities and fix them before attackers can exploit them. 

Impact on Dynamic Microgrid Partitioning: 

FDIA can significantly disrupt dynamic microgrid partitioning, essential for optimizing energy distribution 

within smart grids. Manipulated data can lead to inefficient microgrid segmentation, affecting the reliability 

and efficiency of energy distribution. This can result in operational failures, particularly during peak demand 
periods, leading to widespread blackouts or brownouts. Ensuring accurate data for dynamic partitioning is 

crucial for maintaining grid stability and efficiency. 
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The ability to dynamically partition the grid into microgrids allows for localized management of energy 

sources, improving resilience and dropping the influence of large-scale disruptions. However, FDIAs targeting 

this capability can severely undermine its effectiveness. By injecting false data, attackers can cause 

misallocation of resources, leading to either underutilization or overloading of certain segments of the grid. 

This not only distresses the immediate operation of the smart grid but can also have long-term implications 

for infrastructure planning and investment. Ensuring robust validation and verification processes for data 

used in dynamic partitioning is essential to safeguard against such attacks. 

Systemic Risks: 

The interconnected nature of smart grids means that a localized FDIA can have widespread effects. 

Disruptions in one part of the grid can cascade to other parts, affecting overall grid stability and performance. 
This interconnectedness can amplify the impact of FDIA, turning localized issues into major grid-wide 

problems. Ensuring the reliability and efficiency of smart grids requires comprehensive security strategies 

to detect and mitigate FDIA, safeguarding the grid’s operational integrity and economic stability. 

The systemic risks posed by FDIA are further exacerbated by the growing complexity of the energy 

ecosystem, which includes not only traditional power generation and distribution but also renewable 

sources, electric automobiles, and smart appliances. The incorporation of these diverse elements increases 

the potential for cascading failures and complicates the task of maintaining grid stability. To address these 

challenges, a holistic strategy for grid management is required, one that encompasses both preventive 

measures and rapid response strategies. This includes developing advanced analytics for real-time 
monitoring, deploying automated response systems, and fostering collaboration among different 

stakeholders to ensure a coordinated and effective response to any incidents. 

 

 

Chapter 6 Conclusion & Future Outlook 

6.1 Conclusion 

With widely investigation, this study has thoroughly examined the critical issue of False Data Injection 

Attacks (FDIA) on smart grids, analyzing various attack models and their impacts. The research has 

demonstrated the vulnerabilities of smart grids to FDIAs and highlighted the importance of enhancing their 

security. By developing an advanced neural network-based framework for detecting, localizing, and 

recovering tampered data, the study delivers a robust solution to alleviate the effects of these attacks. 

The proposed model utilizes deep convolutional neural networks with self-attention mechanisms and 

autoencoders equipped with long- and short-term memory networks. This approach has shown significant 

improvements in identifying and countering FDIA, ensuring the resilience of smart grid operations. The 

findings emphasize that FDIAs can disrupt grid functionality, leading to operational inefficiencies, economic 

losses, and compromised reliability. The study's contributions offer a promising direction for enhancing 

smart grid security against such sophisticated cyber threats. 

6.2 Future Outlook 

As smart grid technology evolves, driven by advancements in information and communication 
technologies, securing these grids will become increasingly vital. Future research and development in this 
area should focus on several key directions: 
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1. Enhanced Detection Mechanisms: 

Improving the accuracy and speed of FDIA detection systems using progressive machine learning 

algorithms like federated learning and sophisticated neural network architectures. 

2. Integration of Emerging Technologies: 

Leveraging technologies such as block-chain for secure data transactions and quantum computing for 
advanced encryption to add additional layers of security. 

3. Adaptive Security Strategies: 

Developing real-time monitoring systems capable of dynamically adjusting defense mechanisms based 
on detected threats to maintain grid security. 

4. Interdisciplinary Research: 

Encouraging interdisciplinary research combining expertise from electrical engineering, computer 
science, and cybersecurity to develop innovative solutions for smart grid security. 

5. Global Collaboration: 

Fostering international collaboration to share knowledge, best practices, and threat intelligence, 
building a more resilient global smart grid infrastructure. 

By pursuing these directions, future research can significantly increase the safety and resilience of smart 

grids, ensuring their reliability as a component of this contemporary energy structure. The ongoing 

development of smart grids presents both opportunities and challenges, and addressing these challenges 

through innovative security solutions will be key to their successful implementation and operation. 
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