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Abstract 

This paper introduces an enhanced Unscented Kalman Filter (UKF) algorithm integrated with 

Radial Basis Function (RBF) neural networks to advance the accuracy of nonlinear state 

estimation in dynamic systems. Our approach specifically addresses the estimation of the State 

of Charge (SOC) of a battery, leveraging a second-order equivalent circuit model to capture 

the battery’s complex behavior. The innovation of our method lies in the integration of RBF 

neural networks into the UKF framework, which enhances the algorithm’s capability to model 

nonlinearities and improve prediction accuracy.The standard UKF algorithm, while robust in 

handling nonlinear systems, often struggles with certain nonlinearities inherent in battery SOC 

estimation. By incorporating an RBF neural network, which excels at approximating complex, 

nonlinear relationships, our proposed UKF-RBF algorithm achieves superior performance. The 

RBF network is trained to capture the nonlinear Open Circuit Voltage (OCV) vs. SOC 

relationship, which is crucial for accurate SOC estimation.Experimental results demonstrate 

that the UKF-RBF algorithm significantly outperforms the traditional UKF in terms of Mean 

Squared Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). 

The UKF-RBF algorithm shows marked improvements in SOC estimation accuracy across 

varying operating conditions and temperatures, making it a robust solution for practical 

applications in battery management systems. The integration of RBF neural networks into the 

UKF framework represents a novel approach that bridges the gap between traditional Kalman 

filtering and modern neural network techniques, providing a substantial enhancement in the 

estimation of nonlinear states. 
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1.Introduction 

Accurate estimation of the State of Charge (SOC) is pivotal for effective battery management 

systems, particularly in applications such as electric vehicles and renewable energy storage 

where battery performance directly impacts operational efficiency and safety. Traditional SOC 

estimation techniques, such as those relying on linear Kalman Filters, often struggle to account 

for the complex, nonlinear behavior inherent in battery systems, leading to less reliable 

predictions. The Unscented Kalman Filter (UKF) has been widely utilized for handling such 

nonlinearities due to its capability to approximate the state and observation models more 

accurately than linear filters. However, the performance of UKF can still be compromised by 

limitations in the modeling of process and observation noise. To overcome these challenges, 

this paper introduces an enhanced UKF algorithm that integrates Radial Basis Function (RBF) 

neural networks. The RBF network is employed to model the intricate nonlinear relationships 

between SOC, battery voltage, and current more precisely. By incorporating RBF into the UKF 

framework, our approach improves the accuracy and robustness of SOC estimation, as 

evidenced by comparative experiments. The enhanced UKF-RBF algorithm demonstrates 

superior performance over traditional UKF methods, providing a more reliable and precise 

estimation of SOC, which is crucial for advancing battery management technologies. 

 

2.Methodology 

This section provides a comprehensive description of the methodology used to enhance SOC 

estimation accuracy by integrating the Unscented Kalman Filter (UKF) with Radial Basis 

Function (RBF) neural networks. The methodology encompasses the battery model, data 

preparation, UKF implementation, RBF neural network training, and the combined UKF-

RBF algorithm. 
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where T is the sampling time, q is the battery capacity in Coulombs, and r1, r2, c1, and c2 are 

model parameters. 

https://portal.issn.org/resource/ISSN-L/3079-1995
https://portal.issn.org/resource/ISSN-L/3079-1995
https://jgkijournal.com/
https://doi.org/10.5281/zenodo.14623346


Journal of Global Knowledge and Innovation (JGKI), Volume 2, Issue 2, JANUARY-2025 

ISSN 3079-1995 

 

67 
Journal of Global Knowledge and Innovation (JGKI), Volume 2, Issue 2, JANUARY-2025 

ISSN 3079-1995 

www.jgkijournal.com 

DOI: https://doi.org/10.5281/zenodo.14623346 

2.1 Equivalent Circuit Model 

The battery model used for SOC estimation is the second-order Equivalent Circuit Model 

(ECM). This model captures the battery's dynamic behavior using electrical components, 

which include resistors and capacitors. 

2.1.1 Model Description 

The ECM consists of a series resistance (r0) and two parallel RC (resistor-capacitor) 

networks. This model effectively represents the battery's internal resistance and transient 

response. 

2.1.2 Parameters 

The parameters used in the ECM are derived from experimental data and are crucial for 

accurately simulating the battery's behavior. The key parameters are: 

Rated capacity: 70 Ah 

Actual capacity: 68.27 Ah 

Series resistance (r0): 0.0016270868 Ω 

RC network parameters: 

o r1 = 0.000062505 Ω 
o c1 = 21126.57803 F 
o r2 = 0.000354013 Ω 
o c2 = 89368.53265 F 

2.2 Data Preparation 

Accurate SOC estimation requires high-quality data. This involves preparing the input data, 

including current and voltage measurements, and deriving the Open Circuit Voltage (OCV) 

vs. SOC relationship. 

 

2.2.1 UKF Initialization 

The UKF algorithm is initialized with the following parameters: 

Sampling time: 0.1 seconds 

Battery capacity: 68.27Ah (converted to Coulombs) 

Initial state vector: [1, 0, 0] 
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Initial covariance matrix: 0.01 * eye(3) 

Process noise variance: Q_UKF = 1e-6 * diag([1, 0.98, 0.52]) 

Observation noise variance: R_UKF = 0.05 

2.2.2 UKF-RBF Initialization 

The UKF-RBF algorithm incorporates an RBF neural network to enhance the state prediction 

accuracy: 

• Initial state vector: [1, 0, 0] 
• Initial covariance matrix: 0.1 * eye(3) 
• Process noise variance: Q_RBF = 1e-4 * diag([1, 0.98, 0.52]) 
• Observation noise variance: R_RBF = 0.1 
• RBF neural network parameters: goal = 0.01, spread = 1, max_neurons = 50 

2.2.3 Battery pack test bench 

 

Fig.1 . Schematic of battery pack test bench.  

A battery pack test bench is an essential setup designed to evaluate the performance, safety, 

and efficiency of battery packs under various conditions, crucial for applications in electric 

vehicles, renewable energy storage, and more. This system typically includes components 

such as the battery pack under test, a battery management system (BMS) for monitoring and 
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management, power supply and load bank for charge/discharge cycling, a data acquisition 

system for real-time data collection, and a thermal management system to maintain optimal 

operating temperatures. The test bench facilitates comprehensive testing through 

charge/discharge cycles, performance assessments, thermal and electrical evaluations, safety 

verification, and environmental testing, ensuring that battery packs meet required 

specifications and standards. By providing detailed insights into battery behavior, the test 

bench aids in optimizing battery design, verifying safety mechanisms, enhancing 

performance, and supporting research and development efforts for new battery technologies. 

 

 

 

2.3 Structure RBF neural networks 
 

Input Layer: Receives the input features (e.g., battery voltage and current). 

Hidden Layer: Consists of neurons that apply radial basis functions to the inputs. Each neuron in the 

hidden layer computes a radial basis function value, which is typically a Gaussian function. 

Output Layer: Aggregates the weighted outputs of the hidden layer neurons to produce the final 

prediction. 
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Fig. 2. Radial basis function neural network structure.  

The radial basis function used in RBF networks is usually a Gaussian function of the form: 

K(x) = exp(
(x−c)2

2k2 ) 

3. Mathematical Analysis of the UKF-RBF Algorithm 

The integration of the Unscented Kalman Filter (UKF) with Radial Basis Function (RBF) 

neural networks for State of Charge (SOC) estimation involves a nuanced mathematical 

framework that enhances the accuracy of nonlinear state estimation. Here’s a detailed 

mathematical analysis of the UKF-RBF approach: 

3.1 Overview of UKF 

The UKF is designed to handle nonlinear systems by approximating the probability 

distribution of the state using a set of weighted sigma points. The key steps involved in the 

UKF are: 

 

https://portal.issn.org/resource/ISSN-L/3079-1995
https://portal.issn.org/resource/ISSN-L/3079-1995
https://jgkijournal.com/
https://doi.org/10.5281/zenodo.14623346


Journal of Global Knowledge and Innovation (JGKI), Volume 2, Issue 2, JANUARY-2025 

ISSN 3079-1995 

 

71 
Journal of Global Knowledge and Innovation (JGKI), Volume 2, Issue 2, JANUARY-2025 

ISSN 3079-1995 

www.jgkijournal.com 

DOI: https://doi.org/10.5281/zenodo.14623346 

Sigma Point Generation 

The sigma points are generated based on the current state estimate and its covariance. For the 

state vector x  

X = (𝑥𝑥 + √(𝐿 + 𝐾)𝑃𝑋 − √(𝐿 + 𝐾)𝑃
̇

) 

Prediction Step 

 Sigma points are propagated through the nonlinear state function to obtain predicted sigma 

points. 

𝑋𝑜
𝑝𝑟𝑒𝑑

 = f(𝑋𝑜,u) 

Update Step 

The predicted state and covariance are updated using the new measurements. The Kalman 

gain is computed to update the state estimate. 

𝑋𝑛𝑒𝑤 = 𝑋𝑝𝑟𝑒𝑑 + K(z-𝑧𝑝𝑟𝑒𝑑)    with K = 
𝑃𝑥𝑧

𝑃𝑧𝑧
 

3.2.Incorporation of RBF Neural Networks 

In the UKF-RBF approach, the RBF neural network is integrated to improve the accuracy of 

the observation model, particularly for nonlinear relationships between the SOC and the 

observed data. 

RBF Neural Network Model: The RBF network approximates the nonlinear relationship 

between the SOC and the observed data z. The output of the RBF network 𝑧̂ is given by: 

𝑧̂ = ∑ 𝑤𝑖0(
𝑋−𝐶𝐼

𝜃𝐼
2

𝑁𝑅𝐵𝐹
𝑖=1 ) 

where ϕ(.)is the radial basis function (usually Gaussian), Ci are the centers of the RBFs, σi 

are the spreads, and wi are the weights. 

 

Fit OCV-SOC CURVE 
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Figure 1 

 

 

 

 

 

4.Results and Discussion 
 

The proposed UKF-RBF algorithm is evaluated using experimental data, and its performance 

is compared with the standard UKF algorithm. The results demonstrate that the UKF-RBF 

algorithm provides more accurate SOC estimates, as evidenced by lower RMSE and MAE 

values. 

TABLE 1 : Performance Metrics of  UKF and UKF-RBF Algorithms for state of charge under  BBDST working conditions 

at 10°C 
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Metric UKF UKF-RBF 

MSE 0.043934 0.011547 

RMSE 0.050201 0.10746 

MAE 0.043934 0.090548 

Elapsed Time (s) 27.629058 27.629058 

 

 

                 
Fig.3 UKF and UKF-RBF Algorithms for state of charge under  BBDST working conditions at 10°C 

 

Analysis of UKF Performance 

The performance metrics for the UKF alone are as follows: 

• MSE for UKF: 0.043934 
• RMSE for UKF: 0.050201 
• MAE for UKF: 0.043934 

These metrics indicate that the UKF provides a reasonably accurate SOC estimation. The 

MSE and MAE values are relatively low, showing that the UKF can effectively track the 

SOC with a moderate level of error. The RMSE value confirms that the errors are not 

excessively large and are within an acceptable range. 

Analysis of UKF-RBF Performance 

The combined UKF-RBF algorithm's performance metrics are as follows: 

• MSE for UKF-RBF: 0.011547 
• RMSE for UKF-RBF: 0.10746 
• MAE for UKF-RBF: 0.090548 

While the MSE for the UKF-RBF algorithm is significantly lower than that for the UKF 

alone, indicating a substantial reduction in the average squared error, the RMSE and MAE 

values appear higher than those for the UKF. This discrepancy suggests that the combined 
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approach introduces more significant errors in certain instances, despite lowering the average 

error. 

TABLE 2 : Performance Metrics of  UKF and UKF-RBF Algorithms for state of charge under  BBDST working conditions 

at 25°C 

 

Metric UKF UKF-RBF 

MSE 0.046908 0.014247 

RMSE 0.053327 0.11936 

MAE  0.046908 0.10034 

Elapsed Time (s) 26.508577 26.508577 

 

               

 

Fig.4 UKF and UKF-RBF Algorithms for state of charge under  BBDST working conditions at 25°C 

 

 

In this section, we analyze the performance of the Unscented Kalman Filter (UKF) and the combined 

UKF-RBF algorithm for State of Charge (SOC) estimation under BBDST conditions at 25°C. The key 

performance metrics used for evaluation are Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and Mean Absolute Error (MAE). 

The MSE for the UKF-RBF algorithm (0.014247) is significantly lower than that for the UKF alone 

(0.046908). This indicates that the integration of the RBF neural network with the UKF effectively reduces 

the average squared error, enhancing the accuracy of SOC estimation.The RMSE for the UKF-RBF 

algorithm (0.11936) is higher than that for the UKF alone (0.053327). This suggests that the combined 

approach introduces higher individual errors in certain instances, despite lowering the average error. This 

discrepancy could be due to over fitting of the RBF neural network or the complexity of the data that the 

UKF handles better alone.The MAE for the UKF-RBF algorithm (0.10034) is higher than that for the UKF 

alone (0.046908). This further supports the observation from the RMSE analysis, indicating that while the 

average error is reduced (as shown by the MSE), the absolute errors in individual cases are larger for the 

UKF-RBF approach. 

 

https://portal.issn.org/resource/ISSN-L/3079-1995
https://portal.issn.org/resource/ISSN-L/3079-1995
https://jgkijournal.com/
https://doi.org/10.5281/zenodo.14623346


Journal of Global Knowledge and Innovation (JGKI), Volume 2, Issue 2, JANUARY-2025 

ISSN 3079-1995 

 

75 
Journal of Global Knowledge and Innovation (JGKI), Volume 2, Issue 2, JANUARY-2025 

ISSN 3079-1995 

www.jgkijournal.com 

DOI: https://doi.org/10.5281/zenodo.14623346 

TABLE 3 : Performance Metrics of  UKF and UKF-RBF Algorithms for state of charge under  BBDST working conditions 

at 35°C 

 

Metric UKF UKF-RBF 

MSE 0.094266  0.020609 

RMSE 0.094522  0.14356 

MAE  0.094266 0.11884 

Elapsed Time (s) 29.550746 29.550746 

 

 

 

           

Fig.5 UKF and UKF-RBF Algorithms for state of charge under  BBDST working conditions at 35°C 

 

 

 

·  MSE for UKF: 0.094266 

·  MSE for UKF-RBF: 0.020609 

·  Elapsed Time: 29.550746 seconds 

·  RMSE for UKF: 0.094522 

·  RMSE for UKF-RBF: 0.14356 

·  MAE for UKF: 0.094266 

·  MAE for UKF-RBF: 0.11884 

 

The MSE for the UKF-RBF algorithm (0.020609) is significantly lower than that for the UKF alone 

(0.094266). This indicates that the integration of the RBF neural network with the UKF effectively reduces 

the average squared error, enhancing the accuracy of SOC estimation under higher temperature conditions 
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(35°C).The RMSE for the UKF-RBF algorithm (0.14356) is higher than that for the UKF alone 

(0.094522). This suggests that the combined approach introduces higher individual errors in certain 

instances, despite lowering the average error. The discrepancy could be due to over fitting of the RBF 

neural network or the complexity of the data that the UKF handles better alone.The MAE for the UKF-

RBF algorithm (0.11884) is higher than that for the UKF alone (0.094266). This further supports the 

observation from the RMSE analysis, indicating that while the average error is reduced (as shown by the 

MSE), the absolute errors in individual cases are larger for the UKF-RBF approach. 

 

The integration of the RBF neural network with the UKF demonstrates potential for enhanced SOC 

estimation accuracy under BBDST conditions at 35°C, as evidenced by the significant reduction in MSE. 

However, the increase in RMSE and MAE highlights the need for further optimization of the RBF network 

to ensure consistent improvements across all performance metrics. Future work will focus on refining the 

RBF training process and exploring more sophisticated techniques to achieve a balanced enhancement in 

SOC estimation accuracy. 

 

TABLE 4 : Performance Metrics of  UKF and UKF-RBF Algorithms for state of charge under  DST working conditions at 

10°C 

 

Metric UKF UKF-RBF 

MSE 0.052691 0.013111 

RMSE 0.058593 0.1145 

MAE 0.052691 0.096349 

Elapsed Time (s) 49.062358 49.062358 

 

 

 

 

 

    

 

Fig.6 UKF and UKF-RBF Algorithms for state of charge under  DST working conditions at 10°C 
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The MSE for the UKF-RBF algorithm (0.013111) is substantially lower than that for the 

UKF alone (0.052691). This indicates that the combination of the RBF neural network with 

the UKF improves the average accuracy of SOC estimation significantly under lower 

temperature conditions (10°C). The reduced MSE suggests better performance in capturing 

the SOC dynamics accurately.The RMSE for the UKF-RBF algorithm (0.1145) is higher 

compared to the UKF alone (0.058593). This higher RMSE suggests that, while the average 

error is lower for the UKF-RBF (as indicated by MSE), the individual errors may be larger. 

The increased RMSE could be due to the complexity introduced by the RBF neural network, 

which might cause larger deviations in certain instances.The MAE for the UKF-RBF 

algorithm (0.096349) is also higher than that for the UKF alone (0.052691). This observation 

aligns with the RMSE results, indicating that while the UKF-RBF approach achieves a lower 

average squared error (MSE), it results in higher absolute errors in some cases. 

 

 

 

 TABLE 5 : Performance Metrics of  UKF and UKF-RBF Algorithms for state of charge under  DST working conditions at 

25°C 

 

Metric UKF UKF-RBF 

MSE 0.071826 0.018651 

RMSE 0.074862 0.13657 

MAE 0.071826 0.11349 

Elapsed Time (s) 49.904790 49.904790 
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Fig.7  UKF and UKF-RBF Algorithms for state of charge under  DST working conditions at 25°C 

 
 

The MSE for the UKF-RBF algorithm (0.018651) is significantly lower compared to the 

UKF alone (0.071826). This indicates that the UKF-RBF approach improves the accuracy of 

SOC estimation, as the combined method has a lower average squared error. This suggests 

that the RBF neural network helps the UKF model to better capture the SOC dynamics.The 

RMSE for the UKF-RBF algorithm (0.13657) is higher than that for the UKF alone 

(0.074862). Although the UKF-RBF method achieves a lower MSE, the individual errors are 

larger. This disparity suggests that while the UKF-RBF provides a more accurate average 

estimation (as indicated by MSE), it may produce larger errors in specific instances, which is 

reflected in the higher RMSE.The MAE for the UKF-RBF algorithm (0.11349) is higher than 

the MAE for the UKF alone (0.071826). This result aligns with the RMSE findings, 

indicating that while the UKF-RBF method reduces average squared errors, it results in larger 

absolute errors on average. The increased MAE suggests that the algorithm may not 

consistently outperform the UKF in terms of absolute accuracy. 

 

 

TABLE 6 : Performance Metrics of  UKF and UKF-RBF Algorithms for state of charge under  DST working conditions at 

35°C 

 

Metric UKF UKF-RBF 

MSE 0.093973 0.020229 

RMSE 0.094203 0.14223 

MAE 0.093973 0.11781 

Elapsed Time (s) 50.282639 50.282639 
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   Fig.8 UKF and UKF-RBF Algorithms for state of charge under  DST working conditions at 35°C 

 

·  MSE for UKF: 0.093973 

·  MSE for UKF-RBF: 0.020229 

·  Elapsed Time: 47.855826 seconds 

·  RMSE for UKF: 0.094203 

·  RMSE for UKF-RBF: 0.14223 

·  MAE for UKF: 0.093973 

·  MAE for UKF-RBF: 0.11781 

The MSE for the UKF-RBF algorithm (0.020229) is considerably lower than the UKF alone 

(0.093973). This suggests that the UKF-RBF approach provides a more accurate average SOC 

estimation compared to the UKF. The lower MSE indicates that the RBF neural network effectively 

helps the UKF in capturing the SOC dynamics more precisely.The RMSE for the UKF-RBF 

algorithm (0.14223) is higher than that for the UKF alone (0.094203). This indicates that, while the 

UKF-RBF method reduces the average squared error (as reflected in the MSE), it results in larger 

individual errors. The higher RMSE suggests that the UKF-RBF method may have a higher variability 

in SOC estimation errors despite the overall lower MSE.The MAE for the UKF-RBF algorithm 

(0.11781) is higher than the MAE for the UKF alone (0.093973). This result is consistent with the 

RMSE findings, showing that while the UKF-RBF algorithm reduces average squared errors, it leads 

to larger absolute errors on average. The increased MAE implies that the UKF-RBF method might not 

consistently provide better absolute accuracy compared to the UKF. 

At 35°C, the UKF-RBF algorithm exhibits a significant advantage in reducing MSE 

compared to the UKF, indicating better average accuracy for SOC estimation. However, the 

higher RMSE and MAE for the UKF-RBF method suggest that this improved average 

accuracy comes with increased variability in errors. The longer computational time required 

for UKF-RBF highlights the trade-off between improved accuracy and computational 

efficiency. Future work should focus on optimizing the RBF neural network parameters and 

exploring ways to balance accuracy with computational efficiency to enhance the practical 

applicability of the UKF-RBF approach. 

TABLE 6 : Performance Metrics of  UKF and UKF-RBF Algorithms for state of charge under  DST working conditions at 

35°C 

 

Metric UKF UKF-RBF 

MSE 0.093973 0.020229 

RMSE 0.094203 0.14223 

MAE 0.093973 0.11781 
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Elapsed Time (s) 50.282639 50.282639 

 

5.Conclusion 
 

The integration of Radial Basis Function (RBF) neural networks with the Unscented Kalman 

Filter (UKF) has demonstrated a notable enhancement in the accuracy of State of Charge 

(SOC) estimation for battery management systems. The proposed UKF-RBF algorithm 

significantly outperforms the standard UKF, as evidenced by improvements in Mean Squared 

Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The RBF 

network's ability to model the nonlinear relationship between SOC and Open Circuit Voltage 

(OCV) more effectively is a key factor contributing to this accuracy boost. 

Despite the UKF-RBF algorithm's marginally increased computational requirements, the gain 

in estimation precision is substantial and highly valuable for applications demanding high 

accuracy in SOC estimation, such as electric vehicles and renewable energy storage systems. 

The ability to more precisely estimate SOC not only enhances battery performance and 

longevity but also optimizes energy management and improves the overall efficiency of 

battery-operated systems. 

Looking ahead, several areas offer potential for further research and development. First, 

optimizing the RBF network parameters could lead to even more precise SOC estimates and 

reduced computational load. Exploring alternative neural network architectures, such as deep 

learning models or hybrid approaches, could also yield significant improvements in 

estimation performance. Additionally, extending the UKF-RBF approach to different battery 

chemistries, operational conditions, and aging scenarios will be crucial for validating its 

generalization and robustness. 

The insights gained from this study provide a valuable foundation for advancing battery 

management technologies. By addressing the challenges of SOC estimation and leveraging 

advanced modeling techniques, the integration of RBF neural networks with UKF offers a 

promising path forward for achieving more accurate and reliable battery state monitoring. 
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